首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
某电厂调速器步进电机轴在开机调负荷过程中发生断裂,对断裂电机轴进行了宏观检验、化学成分分析、硬度测试、金相检验和断口分析,并对步进电机轴材料进行了切应力校核。结果表明:该调速器步进电机轴断裂失效为低应力高周旋转/弯曲疲劳断裂。电机轴断裂失效的主要原因一方面是因为变径部位退刀槽位置容易造成应力集中现象,从而促使步进电机轴表面产生疲劳裂纹;另一方面是因为硫化物、碳化物等夹杂物的存在会降低材料的塑性、韧性和疲劳强度,进一步造成应力叠加,材料力学性能降低,加速疲劳裂纹的形成和扩展。  相似文献   

2.
某汽车在行驶过程中,其后轮毂轴在安装轴承附近发生断裂,该车累计行驶里程为17km,轮毂轴材料为65Mn弹簧钢。通过外观检查、断口宏微观观察、能谱分析、化学成分分析、硬度检测和金相检验等实验,确定了轮毂轴的失效性质及失效原因。结果表明:轮毂轴失效性质为疲劳断裂;轮毂轴内部存在锻造裂纹是轮毂轴发生疲劳断裂失效的主要原因;锻造裂纹的产生可能为切削量不足导致轮毂轴原材料料头端部存在块状缺陷。  相似文献   

3.
对某BM4输出轴使用断裂失效件进行了理化检验和失效分析。结果表明:该输出轴断裂失效主要是由于工件在渗碳淬火过程中,淬透性严重不足,造成基体组织存在大量的粒状贝氏体和块状铁素体,从而使材料强度大幅度降低;另输出轴原材料中大量存在的非金属夹杂物也增加了材料的脆性;而原材料严重的带状组织,使材料的横向抗拉强度进一步降低;上述因素综合作用最终造成输出轴在承载时发生早期断裂失效。  相似文献   

4.
对曲柄销轴在采油设备上的安装配合情况进行了调查,在此基础上,分析了销轴在采油设备工作时的受力情况,并通过化学分析、金相检验和扫描电镜等方法对销轴断裂失效进行了分析。结果表明,该销轴在交变偏斜拉应力的作用下,在销轴的应力集中处——退刀槽根部产生疲劳裂纹,最终导致疲劳断裂。另外钢材质量欠佳、组织不良也促进了断裂过程的进行。  相似文献   

5.
某泥浆泵动力端35CrMo钢被动轴在工作过程中发生断裂失效。通过宏观观察、化学成分分析、力学性能测试、扫描电镜分析、金相检验、夹杂物和疏松缺陷分析等方法对被动轴断裂失效原因进行了分析。结果表明:泥浆泵动力端被动轴心部存在大量的枝晶组织、夹杂物与孔隙疏松等缺陷及不均匀组织,这显著降低了被动轴的力学性能,这是造成被动轴过载脆性断裂失效的主要原因。  相似文献   

6.
螺杆钻具挠轴失效分析   总被引:1,自引:0,他引:1  
两螺杆钻具挠轴在运转过程中突然断裂。采用化学分析、金相检验、力学性能测定等方法对失效挠轴进行了分析。结果表明.挠轴属脆性断裂,而原材料中的组织缺陷和加工工艺不当,是造成挠轴脆断的主要原因。提出了改进措施。  相似文献   

7.
针对某汽车变速箱输出轴断裂失效问题,运用失效分析方法,开展了宏观痕迹分析、断口分析、化学成分分析、金相检验,硬度测试及氢含量测定。结果表明:汽车变速箱输出轴断裂为延迟断裂,输出轴尾部螺纹处表面渗碳层较高硬度的回火马氏体组织为延迟断裂提供"必要条件",这与螺纹处局部处理工艺的控制不合理相关;一定的外加静拉应力、自身残余应力和氢含量为延迟断裂的"充分条件"。最后提出了改进与预防措施。  相似文献   

8.
采用断口分析、金相检验、力学性能测试和化学成分分析等方法,对服役10多天便发生断裂的给水泵轴进行了失效分析。结果表明,断口宏观上有明显的贝纹线花样,贝纹区面积较小,而瞬断区面积很大,其微观形态主要为疲劳辉纹,因此泵轴的断裂属早期疲劳断裂。而材料的显微组织中存在较多的呈带状分布的δ-铁素体和残余奥氏体,使材料强度偏低,这是引起泵轴早期断裂的主要原因。  相似文献   

9.
某空压机曲轴在运行约5 000h后发生断裂失效,通过宏观检验、断口分析、金相检验以及硬度测试等方法,对空压机曲轴断裂原因进行了分析。结果表明:由于曲轴中存在严重的疏松缺陷,在运行过程中于曲轴轴颈和轴拐R过渡表面疏松处萌生裂纹,在交变应力作用下,裂纹以疲劳方式扩展直至曲轴断裂失效。  相似文献   

10.
某输出轴发生断裂,经过对断轴的UT超声波探伤,从断口、金相及对相关热处理资料的调查分析,综合评述了该输出轴断裂失效的原因,总结并提出了今后检验工作中应注意的几个问题.  相似文献   

11.
40Cr钢机油泵轴断裂分析   总被引:1,自引:0,他引:1  
采用化学成分分析、断口分析、硬度测试及金相检验等方法,对某汽车机油泵轴的断裂原因进行了分析。结果表明:该泵轴的断裂为早期疲劳断裂,造成疲劳断裂的主要原因是未按要求对泵轴进行调质处理,致使材料的力学性能未达到设计要求,疲劳强度降低。  相似文献   

12.
通过对断裂大轴的外观,金相组织,化学成分,力学性能及断口形貌等综合分析,认为大轴断裂的外因是轴端键槽结构设计不合理造成应力集中,形成裂纹源,内因是材料的非金属元素硫含量偏高以及切向冲击功值偏低所致。  相似文献   

13.
通过宏观及微观分析方法对电机转轴组件发生非正常早期断裂的原因进行了分析。结果表明:在腐蚀环境及循环应力的共同作用下,电机转轴组件产生局部腐蚀开裂及疲劳扩展,导致了组件的最终失效,属腐蚀疲劳断裂,且电机转轴先于其内套小齿轮轴发生断裂。  相似文献   

14.
Shaft fracture at an early stage of operation is a common problem for a certain type of wind turbine. To determine the cause of shaft failure a series of experimental tests were conducted to evaluate the chemical composition and mechanical properties. A detail analysis involving macroscopic feature and microstructure analysis of the material of the shaft was also performed to have an in depth knowledge of the cause of fracture. The experimental tests and analysis results show that there are no significant differences in the material property of the main shaft when comparing it with the Standard, EN10083-3:2006. The results show that stress concentration on the shaft surface close to the critical section of the shaft due to rubbing of the annular ring and coupled with high stress concentration caused by the change of inner diameter of the main shaft are the main reasons that result in fracture of the main shaft. In addition, inhomogeneity of the main shaft micro-structure also accelerates up the fracture process of the main shaft. In addition, the theoretical calculation of equivalent stress at the end of the shaft was performed, which demonstrate that cracks can easily occur under the action of impact loads. The contribution of this paper is to provide a reference in fracture analysis of similar main shaft of wind turbines.  相似文献   

15.
This article presents metallurgical failure analysis of a gearbox shaft and a clutch shaft from a marine engine. The gearbox shaft was made of low alloy steel, and the clutch shafts were components made of carbon steel. Fracture surface examination revealed circumferential ratchet marks with the presence of inward progressive beach marks suggesting rotary-bending fatigue failure in the case of gearbox shaft. The star-shaped pattern on the clutch shaft fracture surface suggested that the failure was due to torsional overloading which might have initiated at corrosion pits visible around the fracture surface. The gearbox shaft experienced rotational bending stresses which induced fatigue failure because the fatigue strength of the alloy was too low. The fatigue failure of the gearbox shaft led to the torsional failure of the corroded clutch shaft. The sudden, high level failure load on the clutch shaft occurred when the gear box shaft failed.  相似文献   

16.
采用化学成分分析、断口分析、金相检验和力学性能测试,对某齿轮箱轴发生断裂的原因进行了分析。结果表明:其断裂模式为疲劳断裂,起源于退刀槽尖角位置,直角退刀槽造成应力集中产生疲劳裂纹;而原材料的锻造和热处理工艺不合理,加速了轴的疲劳断裂。  相似文献   

17.
某外供泵在运行期间其泵轴发生断裂。通过宏观和微观检验、化学成分分析以及硬度测试等方法对泵轴断裂的原因进行了分析。结果表明:该轴的热处理没有达到要求,使各项强度指标显著降低,加上在应力集中部位键槽根部产生了疲劳裂纹,并进一步扩展,最终导致泵轴断裂。  相似文献   

18.
风机主轴在使用过程中,突然扭断造成停车。该轴断口齐平,具有明显的扭断特征。应用光学和电子显微镜,从断口的宏观和微观特征、金相组织及力学性能等方面,对风机主轴失效原因进行了分析。结果表明,热处理不当引起表层脱碳和组织粗大,是导致主轴扭断的内在原因;同时轴颈部位应力集中加速了断裂过程。  相似文献   

19.
A bucket wheel excavator failure occurred in a brown-coal mine. The failure was caused by a fractured shaft of the bucket wheel. An attempt to determine the causes of the bucket wheel shaft fracture has been made. To that end, the character of changing loads and their maximum amplitudes has been determined by performing measurements on the excavator. A discreet model of the shaft was built and a numerical simulation of the shaft operation using the FEM method was achieved. An analysis of the materials in the fracture area was also implemented. Macroscopic and microscopic images of the fracture area are provided. The shaft fracture was mainly caused by a non-metallic inclusion located below the surface of the shaft as a result of its being rolled. Moreover, it was discovered that the shaft had not been heat-treated.  相似文献   

20.
动静轴结构旋翼轴是一种具有抗弹击能力的新型直升机旋翼轴构型,拟对自主设计的鼓形花键动静轴结构旋翼轴和柔性联轴节动静轴结构旋翼轴进行载荷分离特性研究。利用有限元软件对这2种动静轴结构旋翼轴的载荷分离系数进行仿真分析,并开展多通道加载试验加以验证。结果表明采用7 mm壁厚静轴时动静轴结构旋翼轴的载荷分离系数相比采用4 mm壁厚静轴时明显提高;柔性联轴节动静轴结构旋翼轴的综合载荷分离系数为77.37%,略高于鼓形花键动静轴结构旋翼轴的76.33%。研究结果可为直升机动静轴结构旋翼轴的设计提供指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号