首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
活性炭硝酸表面改性对催化剂分散度的影响   总被引:12,自引:3,他引:9  
无论是活性炭作为催化剂载体还是在活性炭本身的催化制备过程中,催化剂在活性炭或活性炭前体上的高度分散都是至关重要的。通过X射线能谱(EDX)和扫描电子显微镜(SEM)技术直接观察、研究了活性炭表面经硝酸氧化改性对硝酸铜在煤基活性炭中分散度的影响。此外,将经硝酸表面改性的商品活性炭采用浸渍法负载上硝酸铜催化剂,再经水蒸气二次活化制备了一种新的活性炭。结果表明,硝酸处理造成活性炭吸附性能的下降,并且硝酸处理的强度越高,活性炭吸附性能的下降程度越大。然而,对硝酸处理的活性炭经简单的水洗可恢复其吸附性能。研究结果还表明,活性炭经硝酸氧化提高了炭表面含氧官能团的数量,使催化剂在活性炭的内外表面均能均匀分布,提高了催化剂的分散度和抗烧结能力。活性炭经硝酸改性后再负载硝酸铜进行二次活化制备高性能活性炭,可使硝酸铜的催化性能得到进一步的提升。  相似文献   

2.
采用H_2O_2-HNO_3混合液对芋叶柄基活性炭进行轻度表面氧化改性,再利用表面负载离子的方法对其表面负载Cu~(2+),制备负载铜芋叶柄基活性炭。以亚甲基蓝脱色率为评价指标,分析2次改性过程对芋叶柄基活性炭吸附性能的影响,利用低温N_2吸附、傅里叶红外光谱(FT-IR)等实验技术,对芋叶柄基活性炭的孔结构与性能进行表征与分析。结果表明,经氧化改性后芋叶柄基活性炭的比表面积及孔径增大,BET比表面积为922.600m2/g,孔容0.068cm3/g,孔径18.471nm,对亚甲基蓝脱色率为74.38%。经2次改性后负载铜芋叶柄基活性炭对亚甲基蓝脱色率达93.44%,吸附能力得到进一步提高。  相似文献   

3.
吸附是一种极具应用前景的汽油深度脱硫分离技术。采用硝酸氧化、焙烧、负载金属等方法对活性炭进行改性,利用静态实验研究了改性活性炭对模拟汽油中噻吩的吸附脱除性能。结果表明硝酸氧化可以增加活性炭表面酸性基团的量,提高脱硫性能;N2气氛下焙烧后吸附剂脱硫效果明显优于未处理活性炭;活性炭表面负载Fe、Zn、Cu、Ni金属离子改性中,Fe离子改性活性炭脱硫效果最好。根据上述实验结果,进行了活性炭复合改性实验,得出68%硝酸氧化后再进行Fe离子负载,吸附剂脱硫率最高,噻吩的脱硫率可达到85%。  相似文献   

4.
采用十八烷胺为改性剂对载银二氧化钛进行改性,考察了十八烷胺添加量、改性时间、改性温度及pH值对表面改性的影响,从而确定了最佳用量和最佳改性条件。采用红外光谱、沉降比和抗菌性测定分析了表面改性效果及抗菌性能。结果表明,载银纳米二氧化钛粉体表面处理的最佳条件为十八烷胺添加量4%、改性时间2h、改性温度70℃、pH=3;十八烷胺主要以物理吸附方式吸附在粉体表面,经表面改性后的载银二氧化钛在稀释剂中的沉降比与未改性粉体相比明显下降,改性处理虽导致抗菌性能略有下降,但仍达到99.68%。  相似文献   

5.
黄慧娟  李世杰  尚莉莉  马建锋  刘杏娥 《材料导报》2021,35(24):24041-24046
甲醛作为室内空气的主要污染物之一,对人类的健康造成极大的危害.能否有效去除甲醛已成为人们关注的热点,而吸附法被认为是一种去除甲醛的重要方法.本研究采用低浓度的硝酸、草酸、双氧水和氢氧化钠于常温下浸渍处理竹质活性炭,利用环境扫描电子显微镜(E-SEM)、比表面积分析仪(BET)、傅里叶变换红外光谱(FTlR)和X射线光电子能谱(XPS)对改性前后的活性炭形貌、孔隙特征和表面官能团进行表征,并运用静、动态甲醛检测分析装置评价改性后的竹质活性炭对甲醛的吸附效果.结果表明,与未处理竹质活性炭相比,四种改性处理的竹质活性炭样品表面都有不同程度的蚀刻和皱缩,微孔数量均有不同程度的增加,但氢氧化钠改性竹质活性炭平均孔径为1.89 nm,小于未处理竹质活性炭孔径.改性前后竹质活性炭的FTlR特征吸收峰的峰形没有明显变化,只是峰强有所差异;XPS结果表明改性后竹质活性炭的含氧量均有所增加;改性活性炭对甲醛的去除能力明显提高了,其中硝酸改性竹质活性炭性能最好,主要原因是硝酸改性活性炭表面羰基和酯基的协同作用增强,提高了活性炭的极性,有利于对极性甲醛分子的吸附.  相似文献   

6.
将过渡金属化合物负载到高比表面载体上可以得到具有工业化前景的乙烯/乙烷分离吸附剂,采用柱动态法研究了氧化处理和负载铜(I)改性活性炭的乙烯/乙烷吸附分离性能,结果表明,以表面氧化改性活性炭为载体,CuCL为活性组分的负载型吸附剂较活性炭直接负载CuCl吸附剂具有较大的乙烯吸附容量和选择性,AC-H2O2-CuCl吸附剂的乙烯吸附容量为21.2mL(STP)/g,乙烯/乙烷分离系数达到8.7,其原因是活性炭氧化改性后,表面羧基基团明显增多,使CuCl与活性炭表面结合力加强,改善了其分散状态,提高了利用率。  相似文献   

7.
利用活性炭纤维的氧化还原特性,在活性炭纤维上负载了一定量的贵金属银或金。表征了负载贵金属后活性炭纤维的孔结构变化,以及活性炭纤维表面贵金属颗粒的分布和表面化学性质。研究并比较了负载贵金属后活性炭纤维对氙的吸附性能。研究结果表明,在活性炭纤维上负载适量的贵金属银或金,可以显著地提高活性炭纤维对氙的吸附容量,其可能的原因是由于这些贵金属对活性炭纤维孔宽和表面化学性质的修饰,以及提高了活性炭纤维对氙的吸附势。  相似文献   

8.
甲醛(HCHO)是主要的室内空气污染物之一,对眼睛、鼻腔、呼吸道粘膜组织具有很强的刺激性和毒性。目前,吸附法和非均相催化法是应用最广泛的甲醛净化技术。合成吸附剂如活性炭及其各种改性产品存在甲醛吸附选择性差、合成方法复杂且成本较高等问题。贵金属或过渡金属等合成催化剂虽然对甲醛具有降解效率高、不产生毒副产物等优势,但贵金属价格昂贵,过渡金属催化剂也常需热源才能完全降解甲醛,这限制了其广泛应用。随着对纳米矿物材料环境属性的认识不断加深,纳米矿物材料凭借其天然多孔结构、化学稳定性高、表面酸碱性质可调、资源丰富、价格低廉、处理简单等特性,在甲醛净化中具有潜在的优势。然而,不同种类的纳米矿物材料结构与性质也存在差异,因此其对甲醛的吸附或催化反应活性与作用机制也各不相同。天然硅酸盐类纳米矿物材料如海泡石、凹凸棒石、蒙脱石等由于表面具有酸性位点和较高的表面积,对强极性甲醛分子具有一定的吸附能力。然而,未经处理的天然环境中矿物材料存在吸附选择性差、杂质含量多、孔隙少、表面活性官能团数量少等问题,需要对其进行改性处理。目前,天然纳米矿物吸附剂的改性方法主要有酸处理、焙烧活化和引入有机官能团等。酸、热改性可改善纳米矿物如凹凸棒石、硅藻土的表面酸性,增加其孔隙和孔道开放度,从而增大比表面积。在矿物表面引入氨基等有机官能团可将对甲醛的物理吸附转化为化学吸附,并将甲醛矿化为亚胺类物质。合成纳米矿物吸附剂如沸石分子筛具有孔道结构可调、表面积大等特点,也被广泛应用于甲醛的吸附处理,但是甲醛与水汽存在竞争性吸附,且其抗水性能差,这限制了该类材料的进一步应用。相比于吸附法处理甲醛,非均相催化法如光催化、催化氧化可直接将甲醛转化为二氧化碳和水,具有更加广阔的应用前景。羟基磷灰石、水钠锰矿等纳米矿物对甲醛具有一定催化氧化作用,通过掺杂金属元素、调控其结构与形貌可进一步提高其对甲醛的催化氧化能力。纳米黏土矿物如凹凸棒石、海泡石可作为载体与贵金属、过渡金属、纳米二氧化钛等活性组分复合,从而改善活性组分的分散性,提供反应羟基等活性位点,显著提升复合矿物材料的催化性能,在低温乃至室温下就可将甲醛完全降解。本文综述了各种纳米矿物材料在吸附和非均相催化降解室内空气和部分水体中甲醛的研究进展,系统比较了纳米矿物材料对甲醛的吸附、催化性能、反应机理,指出了该材料目前研究存在的问题,并对其今后的发展趋势进行了展望。  相似文献   

9.
活性炭负载银吸附剂的制备与脱除苯并噻吩的研究   总被引:1,自引:0,他引:1  
采用浓硝酸氧化改性的活性炭为载体负载金属Ag制备了Ag/AC系列吸附剂,并进行了模型柴油中苯并噻吩(BT)的吸附脱除性能研究。采用N2吸附、SEM、FT-IR及XRD技术对吸附剂进行了表征。结果表明,氧化改性增加了活性炭表面酸性基团,有利于脱除弱碱性的BT。以HNO3氧化改性后的活性炭为载体负载AgCl所制备的吸附剂具有最高脱硫率达91.8%。最后探讨了AgNO3在活性炭上的吸附行为及金属Ag对BT的吸附脱除机理。  相似文献   

10.
文婕  孙文晶  杨文 《功能材料》2013,(20):2954-2958
以芳烃萘作为参照物,研究了超大比表面积活性炭MSC-30对喹啉、吲哚和咔唑的吸附选择性。进一步采用3种不同的氧化改性方法对MSC-30活性炭进行了氧化改性,考察氧化改性对活性炭吸附脱氮选择性的影响。结果表明,该活性炭及氧化改性样品选择性吸附脱氮。氧化改性后,活性炭对氮化物的选择性进一步提高,并且对氮化物的吸附量增加。通过量子化学密度泛函理论(DFT)对目标吸附质的前线轨道能量分布进行计算,结果证明,活性炭对于氮化物的吸附选择性高于对芳烃萘的选择性,这和吸附质的反应活泼顺序一致。氧化改性的活性炭,由于表面含氧基团增加,不利于吸附稳定的萘,而有利于吸附较活泼的吲哚和喹啉,尤其倾向于吸附碱性氮化物喹啉。在强氧化的活性炭样品MSC-N和MSC-NS上,喹啉的吸附量分别高达1.05和1.06mmol/g。  相似文献   

11.
Catalytic oxidation of VOC (toluene) over a copper based catalyst was carried out to assess its properties and performance. The Brunauer Emmett Teller (BET) method, X-ray diffraction (XRD), temperature programmed reduction (TPR), N2O pulse titration and energy dispersive spectroscopy (EDS) were used to characterize a series of 5 wt% Cu/gamma-Al2O3 catalysts modified with silver. The experimental results revealed that the addition of silver to 5 wt% Cu/gamma-Al2O3 catalyst highly enhanced its catalytic activity. With increasing addition amount of silver, the light-off curve for complete oxidation of toluene shifted to lower temperature. In addition, the increase of the addition amount of silver caused the copper particle size of 5 wt% Cu/gamma-Al2O3 catalyst to gradually increase. Subsequently, it demonstrated that the increase in the copper particle size is closely associated with the increase in catalytic activity.  相似文献   

12.
An N  Yu Q  Liu G  Li S  Jia M  Zhang W 《Journal of hazardous materials》2011,186(2-3):1392-1397
The catalytic properties of iron oxide supported platinum catalysts (Pt/Fe(2)O(3)), prepared by a colloid deposition route, were investigated for the complete oxidation of formaldehyde. It is found that all the Pt/Fe(2)O(3) catalysts calcined at different temperatures (200-500°C) were active for the oxidation of formaldehyde. Among them, the catalysts calcined at lower temperatures (i.e., 200 and 300°C) exhibited relatively high catalytic activity and stability, which could completely oxidize HCHO even at room temperature. Based on a variety of physical-chemical characterization results, it is proposed that the presence of suitable interaction between Pt particles and iron oxide supports, which is mainly in the form of Pt-O-Fe bonds, should play a positive role in determining the catalytic activity and stability of the supported Pt/Fe(2)O(3) catalysts.  相似文献   

13.
To examine the effect of chemical treatment on the adsorption and catalytic activity of nanostructured platinum based catalyst, the aged commercial Pt/AC catalyst was pretreated with sulfuric acid (H2SO4) and a cleaning agent (Hexane). Several reliable methods such as nitrogen adsorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma (ICP) were employed to characterize the aged Pt/AC catalyst and its chemically pretreated Pt/AC catalysts. The catalytic and adsorption activities of nano-structured heterogeneous Pt/AC catalyst were investigated on the basis of toluene oxidation and adsorption isotherm data. In addition, the adsorption isotherms of toluene were used to calculate the adsorption energy distribution functions for the parent catalyst and its pre-treated nano-structured Pt/AC catalysts. It was found that sulfuric acid aqueous treatment can enhance the catalytic performance of aged Pt/AC catalyst toward catalytic oxidation of toluene. It was also shown that a comparative analysis of the energy distribution functions for nano-structured Pt/AC catalysts as well as the pore size distribution provides valuable information about their structural and energetic heterogeneity.  相似文献   

14.
微波固相法快速制备Cu-ZSM-5催化剂   总被引:1,自引:0,他引:1  
以乙酸铜为原料,ZSM-5沸石分子筛为载体,采用微波固相法制备了Cu-ZSM-5催化剂,通过原子吸收(AAS)测定了不同投料比(mCu(AC)2.H2O:mZSM-5)、微波作用的温度和微波作用的时间对Cu负载量的影响,并通过FT-IR、XRD等方法对Cu-ZSM-5的结构和物性进行了表征,结果表明,微波固相法可将Cu(AC)_2完全分散于ZSM-5分子筛表面,Cu的负载量可高达23.11wt%,分散的Cu(AC)_2与分子筛表面羟基作用形成了新的Cu-O键,这种经过Cu(AC)_2修饰的ZSM-5表面具有更加温和的Lewis酸性。  相似文献   

15.
Supported Cu(II) polymer catalysts were used for the catalytic oxidation of phenol at 30 degrees C and atmospheric pressure using air and H(2)O(2) as oxidants. Heterogenisation of homogeneous Cu(II) catalysts was achieved by adsorption of Cu(II) salts onto polymeric matrices (poly(4-vinylpyridine), Chitosan). The catalytic active sites were represented by Cu(II) ions and showed to conserve their oxidative activity in heterogeneous catalysis as well as in homogeneous systems. The catalytic deactivation was evaluated by quantifying released Cu(II) ions in solution during oxidation, from where Cu-PVP(25) showed the best leaching levels no more than 5 mg L(-1). Results also indicated that Cu-PVP(25) had a catalytic activity (56% of phenol conversion when initial Cu(II) catalytic content was 200 mg L(Reaction)(-1)) comparable to that of commercial catalysts (59% of phenol conversion). Finally, the balance between activity and copper leaching was better represented by Cu-PVP(25) due to the heterogeneous catalytic activity had 86% performance in the heterogeneous phase, and the rest on the homogeneous phase, while Cu-PVP(2) had 59% and CuO/gamma-Al(2)O(3) 68%.  相似文献   

16.
采用HNO3、H2O2和O3对商品活性炭进行表面改性处理,考察了改性处理对活性炭表面基团、负载TiO2以及所形成的TiO2/活性炭复合光催化剂性能的影响。利用傅里叶红外光谱(IR)、X射线光电子能谱(XPS)、扫描电镜(SEM)及氮气吸附等手段对材料进行了表征。结果表明,3种改性方法均可有效提高活性炭载体表面的含氧官能团数量,但是对活性炭的比表面积和孔容影响不大;H2O2和O3对活性炭载体改性后可以提高对钛前驱体的吸附性能,HNO3改性有利于TiO2颗粒在活性炭表面的分散。使用改性后的活性炭作为载体制备的TiO2/活性炭光催化降解甲基橙的性能均高于未改性的TiO2/活性炭催化剂,其中以HNO3改性后的TiO2/活性炭活性最高。  相似文献   

17.
分别以碳纳米管(CNTs)和活性氧化铝(Al2O3)为载体,通过浸渍法制备了负载型镍基催化剂和钙改性的镍基催化剂,用二氧化碳甲炕化反应评价其催化性能,通过X射线衍射(XRD)、程序升温还原(H2-TPR)、程序升温脱附(H2-TPD)和氮气等温吸附脱附等手段对催化剂进行表征,结果表明,Ni/CNTs催化剂中的镍物种比Ni/Al2O3中的镍物种容易还原,同时钙改性Ni/CNTs催化剂更能促进镍物种的还原,添加钙可以促进CNTs载体催化剂的分散度,这些特性能提高钙改性Ni/CNTs催化剂的催化活性和稳定性。  相似文献   

18.
In this study, we regenerated a nano-structured platinum based spent catalyst by applying thermal gas and acid pretreatment and examined the influence of treatment on the catalytic oxidation of toluene. The spent catalysts were pretreated with air, hydrogen and six different acid aqueous solutions (HCl, H2SO4, HNO3, H3PO4, CH3COOH and C2H2O4). The physicochemical properties of the parent and its modified catalysts were characterized by XRD, BET, TEM, and ICP. The results of light-off curves showed that air and hydrogen treated catalysts were more active than the parent catalyst. In addition, the catalytic activities of toluene oxidation for acid aqueous treated samples were identical with the order of Pt/Al ratio.  相似文献   

19.
A new copper vanadate precursor with the formula NH(4)[Cu(2.5)V(2)O(7)(OH)(2)] . H(2)O was synthesized and deposited on two different supports, ZSM-5 and amorphous SiO(2), by a hydrothermal method or by mechanical mixture. The catalytic behaviour was evaluated in the total oxidation of toluene and the characterization was performed by H(2)-temperature-programmed reduction (H(2)-TPR), thermogravimetric analysis, elemental analysis, UV-vis diffuse reflectance spectroscopy and X-ray diffraction. It was found that the copper vanadate phase comprises two mixed oxides, one of them crystalline, the Ziesite phase, and the other one amorphous. The supported catalysts presented a content of copper vanadate phase of about 9-11 wt.%. The copper vanadate deposited on ZSM-5 by the hydrothermal method evidences the best performance in the oxidation of toluene. This behaviour can be associated with the smaller size and higher dispersion of the particles on the support, which was confirmed by their better reducibility and higher band gap energy value compared with the other series of studied catalysts.  相似文献   

20.
To improve catalytic performance iron based catalyst, the effects of some metal promoters, especially potassium, copper and other transition metal oxides as well as different supports have been reported. A series of Fe/K/Cu catalysts promoted with magnesium and ceria by precipitation method, followed by impregnation method; keeping Cu and K content same. The catalysts were characterized by XRD, N2 physisorption, TPR and TEM techniques. From XRD, the presence of hematite (Fe2O3) phase was detected in all precipitated iron catalysts and CFe2.5 phase in all used catalysts. TPR results showed that addition of Mg facilitated the reduction of Fe2O3 and decrease in reduction temperature. The catalytic performance was investigated in a fixed-bed reactor at 250 degrees C, 2 MPa pressure and H2/CO molar ratio of 2. Concentration of Mg was found to affect the CO conversion and product distribution. It was found that precipitated iron catalyst Fe/Mg/Cu/K with Mg/Fe ratio of 0.1 showed highest conversion (60.6%) and C5(+) selectivity (92.4%) among all catalysts tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号