首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
在先驱体转化陶瓷基复合材料的制备中,坯体在裂解前后的体积发生变化。引入体系体积收缩率参数,对单一先驱体转化纤维增强陶瓷基复合材料致密化模型进行了修正。同时,分别对含惰性填料和/或活性填料的先驱体浆料浸渍-裂解纤维增强陶瓷基复合材料致密化进行了模型分析。从理论上揭示了复合材料的浸渍-裂解周期与材料的理论密度和理论孔隙率之间的关系。当先驱体浆料中含有活性填料时,复合材料的理论密度和理论孔隙率与活性填料的反应陶瓷产率、反应密度比、体积收缩率有密切的数学关系。在先驱体中引入活性填料比引入惰性填料能更为有效地提高材料的密度,降低材料的孔隙率。  相似文献   

2.
As the work of adhesion, W a, increases between a silica filler surface and a polymer matrix, the dynamic viscosity and the shear modulus of the composite material increase. The logarithms of these properties decrease linearly as W a decreases. At lower dynamic test frequencies, a change in W a has a more dramatic impact on these properties than at higher frequencies. An “effective silica particle size” model can be used to explain why W a affects the viscosity and the shear modulus of a composite. According to that model, the thickness of the interphase layer increases as the W a increases. An increase in effective particle size decreases the “free” polymer volume, and the decrease free volume polymer causes both the viscosity and the shear modulus to increase. Increasing the dynamic test frequency releases some of the immobilized polymer from the filler surface which causes the effective particle size to decrease. As the effective particle size decreases because of the increased testing frequency and approaches the mean size of the original filler, the impact of the W a value on viscosity and shear modulus should decrease. However, the friction experienced between the filler interphase and the polymer, the so called “skin friction”, depends on the magnitude of W a and the more general term, bond energy density (BED). The skin friction determines the viscosity of the composite, particularly at lower frequencies. Higher W a values induce higher skin friction and thereby higher flow resistance (viscosity) as polymer chains move along the filler surface.  相似文献   

3.
In this paper the common degradation effect of silicon oxide filler on fracture strain and fracture toughness of isotactic polypropylene is investigated by analysing the failure processes in the composite material by microscopic methods. Experiments demonstrate that, although fracture of the polymer regions absorbs considerable energy by plastic deformation, void formation and cracking of the interface between the polymer and the filler usually requires very little energy. These weak interfaces do not resist cracking and are the cause of brittleness in particulate filled systems. The crucial parameters influencing the fracture data of the composite were found to be the volume fraction of the filler and the interfacial adhesion between polymer matrix and particles. As the interfacial fracture energy is usually much smaller than the polymer fracture energy, the composite toughness drops when filler is added. Using a model which describes the individual steps of crack formation and final fracture, an attempt is made to explain the decrease of crack resistance of the polymer matrix with increasing filler fraction and to calculate the fracture energy of the composite by introducing partial values of crack resistance of the matrix and the interface, respectively. In addition, it is discussed how a coarse spherulitic morphology of the matrix, as produced by isothermal crystallization from the melt, can modify this behaviour.  相似文献   

4.
5.
Polymer nanocomposites have proved to be promising energy storage devices for modern power electronic systems. In this work we have studied the dielectric properties and dielectric energy storage densities of 0–3 type BCZT/PVDF-HFP polymer nanocomposites with different filler volume concentrations. BCZT nanopowder was synthesized by solgel method through citrate precursor method. The structural and morphological features of the BCZT nanopowder were examined by X-ray diffraction and transmission electron microscopy. For better polymer ceramic interface coupling, BCZT was surface functionalized with extended aromatic ligand, naphthyl phosphate (NPh). The surface functionalization was validated and quantified by thermogravimetric analysis and X-ray photoelectron spectroscopy. The dielectric constant of surface passivated BCZT nanoparticles was estimated to be ~?155 using slurry technique, while the dielectric permittivity of pristine BCZT nanopowder could not be assessed due to high innate surface conductivity. BCZT/PVDF-HFP polymer nanocomposite thin films were fabricated using solution casting technique. The dispersion quality of the ceramic fillers in the polymer matrix was examined by scanning electron microscopy. Due to better polymer ceramic interface, At 5 vol% filler concentration, NPh modified nanoBCZT/PVDF-HFP films showed enhanced dielectric breakdown strength and energy storage density than untreated nanoBCZT/PVDF-HFP and even pure polymer films. Maximum energy storage density of 8.5 J cm?3 was obtained at an optimum filler concentration of 10 vol% for surface functionalized BCZT/PVDF-HFP composite films of 10 μm thickness.  相似文献   

6.
The acoustic impedance and attenuation in composites made of particle fillers loaded in polymer matrices for transducer backing applications is investigated. The acoustic impedance of tungsten/vinyl composites was modeled, and an experimental matrix identifying variables that contribute to composite attenuation was established. The variable included the particle type, the particle size and volume fraction of a filler, the physical characteristics of the polymer matrix, and the processing route that determined the composite connectivity. Experimental results showed that with an increase in filler particle size or a decrease in volume fraction of filler, there is an increase in composite attenuation. Overall, the various types of filler, the polymer matrix, and the interface between the two contribute to attenuation in the composite, as confirmed by the acoustic properties and the microstructural analysis.  相似文献   

7.
A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles’ surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity ∼6.3 and at a 30 μm thickness achieved a calculated energy density of 4.6 J/cm3.  相似文献   

8.
The electrical conductivity and the specific surface area of conductive fillers in conductor‐insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG‐O/CNT). We report the effect of the rG‐O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG‐O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG‐O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.  相似文献   

9.
Bing Jiang 《Acta Mechanica》2014,225(4-5):1121-1140
Mechanical behavior of filled rubber is very different from the corresponding unfilled gum rubber. To understand such difference, a multiscale material model of a filled rubber, which combines molecular mechanics, statistical mechanics and micromechanics, has been developed. The model has been used to explore how filler particles and filler–elastomer bond strength influence the overall elastic properties of a filled rubber. The model confirmed the well-established phenomena such as non-uniform strain amplification, but now, the model added much more detailed molecular information such as cross-linking density, bond strength at filler–elastomer interface, etc. to the whole phenomena. This capability enables us to investigate the influences of the factors on the overall mechanical properties of filled rubber. The results revealed that the degree of stretching is significantly amplified in elastomer chains that locate in between the filler particles along the loading direction. The degree of non-uniform stretching increases with filler volume fraction. The fully stretched elastomer chains contribute significantly greater force and stiffness than those that are stretched less. Both the Mullins effect and the Payne effect come from the non-uniform filler size and/or spatial distribution. Reducing non-uniformity of filler size and spatial distribution can decrease the degree of the Mullins effect and the Payne effect. Improving bond strength at filler–elastomer interface can delay the Mullins effect and the Payne effect but cannot eliminate them.  相似文献   

10.
The fracture behaviour of FRP composite materials is significantly influenced by the behaviour of the fibre-matrix interfacial bond. Thus far interfacial bond mechanical characterization has been based upon the critical strength and critical fracture energy of debonding. Characterization of the fatigue behaviour of the interfacial debonding process, however, may be more valuable for composite design and fibre-matrix selection. A fracture mechanics model of interfacial bond fatigue based on the mode II strain energy release rate (G II) is presented. An expression forG II is derived for a single fibre in matrix cylinder model. By fitting the model to single fibre pull-out fatigue test data, fatigue crack propagation plots for specific fibre-matrix combinations can be drawn. These should prove useful for the development of fatigue resistant FRP composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号