首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhesion strength and fracture toughness are two crucial mechanical properties for bioceramic coatings on metal implants directly affecting successful implantation and long-term stability. In this study, the adhesion strength of sol-gel derived FHA coatings on Ti6Al4V substrates was measured by pull-out tensile test, and the toughness was assessed by energy release method. With increase of the degree of fluoridation, the adhesion strength increases up to about 40% and the fracture toughness increases about 200 to 300%. Contrary to the wide-spread belief, it is interesting to note that after soaking in the Tris-buffered physiological saline solution (for 21 days), the adhesion strength increases about 60% as compared with the as-deposited coating, instead of decreasing. The mechanism of the increase is discussed.  相似文献   

2.
Fluoridated hydroxyapatite [Ca5(PO4)3(OH)xF1−x] films have reasonably good bioactivity and stability in the body, they could behave better than hydroxyapatite films in medical applications. In this work, a sol-gel method was adopted to prepare fluoridated hydroxyapatite films on titanium alloy. Three kinds of fluorine-containing reagents CF3COOH, HPF6 and NH4PF6 were selected to add into mixed Ca(NO3)2-P2O5 ethanol solutions to form dipping sols. The dipping sol with CF3COOH led to an apatite film in which fluorine could not be detected in EDS. While the dipping sol, with HPF6 or NH4PF6, could result in fluoridated hydroxyapatite films. The incorporation of fluorine could be attributed to the reactions of both HPF6 or NH4PF6 with the mixed Ca(NO3)2-P2O5 ethanol solution to form nano-sized CaF2 particles, which in turn, react with other species to form fluoridated hydroxyapatite during the film formation at 600 °C. Among the three fluorine-containing reagents, HPF6 was the best because its dipping sol was more stable and the resulting films had better morphology.  相似文献   

3.
Interfacial shear strength is one of the critical properties in bioceramic coatings on metal implants because it directly affects the success of implantation and long-term stability. In this study, shear strain lag method was employed to evaluate the interfacial shear strength of sol-gel derived fluoridated hydroxyapatite (FHA) coatings on Ti6Al4V substrates. The residual stresses were measured using the “wafer curvature method”. The resultant interfacial shear strength increased from pure HA’s ∼393-459 MPa as fluorine was increased to 1.96 at% and further increased to ∼572 MPa as fluorine increased to 3.29 at%. The residual stresses in the coating also decreased from pure HA’s ∼273-190 MPa and further to ∼137 MPa as fluorine composition in the coating increased. The reduction in the residual stress mainly comes from the reduction in the difference in coefficient of thermal expansion between the coating and the titanium alloy substrate.  相似文献   

4.
Dissolution resistance and adhesion strength are two main concerns for long-term stability of surface coated metal implants. In this study, fluorine ions are incorporated into magnesium-containing hydroxyapatite coatings (MgF y HA) via sol–gel method to improve the long-term stability of the implants. Surface and interface are studied in terms of phases, depth profiling and chemical bonds by grazing incidence X-ray diffraction, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. The long-term stability is evaluated by dissolution and pull-off test. The results show that fluorine promotes the incorporation of magnesium in HA lattice. The elemental interdiffusion and chemical bonding take place at the coating/substrate interface. Both the dissolution resistance and the adhesion strength are enhanced by fluorine incorporation, thus the long-term stability of the implant is improved.  相似文献   

5.
Magnesium apatite coatings on Ti6Al4V substrate were synthesized by the sol-gel dip-coating method. Magnesium was incorporated in the coating according to the formula (Ca10−xMgx)(PO4)6(OH)2, where x = 0, 0.50, 1.00, 1.50 and 2.00. Approximately 2-μm-thick apatite coatings were derived after five cycles of dip-drawing-drying-firing process. A transitional region (Rt) was formed between substrate and coating during the firing process. Adhesion tests show that the adhesion strength between substrate and apatite coating is enhanced by the incorporation of magnesium in the coating. The quantity of magnesium incorporated appeared to correspond to the Mg-Ti-O chemical bonds formed in the transitional region, which contributed to the adhesion strength of the coatings.  相似文献   

6.
A dense and pure hydroxyapatite [HA, Ca10(PO4)6(OH)2] coating and a fluoridated HA [Ca10(PO4)6(OH)0.67F1.33] are deposited on Ti6Al4V substrates by sol-gel dip coating method. Glucose and bovine serum albumin have been added in standard simulated body fluid (SBF) to form organic-containing SBF in simulation of the physiological blood plasma. The HA and the fluoridated HA coatings are immersed in the standard and modified SBF for time periods of 2, 4, 7, 14 and 28 days at 37 ± 0.1°C. After soaking, the coating surface is examined for nucleation and growth of apatite using SEM morphological observation. The post-soaking SBF solutions are analyzed via Inductively Coupled Plasma spectroscopy for calcium ion concentration. The results show that at concentration of 40 g/L, bovine serum albumin has significant retardation effect on apatite precipitation from SBF onto pure or fluoridated HA coatings; Fluorine-incorporation in HA has positive bio-activation effect in both standard SBF and organic-containing SBF. However, glucose addition in SBF does not generate significant influence on the bioactivity of HA and fluoridated HA.  相似文献   

7.
It is important to control the interface strength of coatings and composite materials; a feature that has been noted for many years. However, how can interface strength be evaluated and controlled? In order to explore this aspect, subcritical fatigue crack growth behaviour was investigated along the interface of a CoNiCrAlY coated Ni‐Base superalloy. According to the traditional fatigue test methodology, fatigue crack propagation tests were carried out, using double cantilever beam specimens. The resistance to the fatigue crack propagation was successfully evaluated by a fracture mechanics approach. Particular attention was given to the effects of surface finish of the substrate as a coating parameter, the test temperature, and long‐term thermal ageing after the coating.  相似文献   

8.
Hydroxyapatite (HAp) coatings were deposited onto substrates of metal biomaterials (Ti, Ti6Al4V, and 316L stainless steel) by electrophoretic deposition (EPD). Only ultra-high surface area HAp powder, prepared by the metathesis method 10Ca(NO3)2 + 6(NH4)2HPO4 + 8NH4OH), could produce dense coatings when sintered at 875–1000°C. Single EPD coatings cracked during sintering owing to the 15–18% sintering shrinkage, but the HAp did not decompose. The use of dual coatings (coat, sinter, coat, sinter) resolved the cracking problem. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) inspection revealed that the second coating filled in the valleys in the cracks of the first coating. The interfacial shear strength of the dual coatings was found, by ASTM F1044-87, to be 12 MPa on a titanium substrate and 22 MPa on 316L stainless steel, comparing quite favorably with the 34 MPa benchmark (the shear strength of bovine cortical bone was found to be 34 MPa). Stainless steel gave the better result since -316L (20.5 m mK-1) > -HAp (14 m mK-1), resulting in residual compressive stresses in the coating, whereas -titanium (10.3 m mK-1) < -HAp, resulting in residual tensile stresses in the coating. © 1999 Kluwer Academic Publishers  相似文献   

9.
根据聚合物改性砂浆不同的界面破坏形式,提出了表征界面粘接特性的内聚强度和界面结合强度概念,并通过二者的总体宏现效应-粘接强度试验探讨了乙烯-醋酸乙酸共聚物、双级配填料和水泥对砂浆内聚强度和界面结合强度的影响.试验表明,在本试验务件下乙烯-醋酸乙酸共聚物的最佳掺量范围为1.5%~3.5%.当聚合物掺量低于3.5%时,随着聚合物掺量的增加,聚合物改性砂浆的粘接强度增大,破坏形式为内聚破坏;当聚合物掺量高于3.5%时,聚合物改性砂浆界面的结合强度降低,导致粘接强度降低,破坏形式为界面破坏.具有合适配比的双级配填料可增强砂浆粘接强度,但大粒径填料的增加会降低砂浆与基材界面的结合强度,导致砂浆的粘接强度降低,在本试验条件下填料A/填料B的比例取1:2为宜.聚合物改性砂浆的粘接强度随水泥掺量的增加而增大,并在掺量为30%时出现拐点,故在本试验条件下水泥掺量取30%较佳.  相似文献   

10.
针对SiC颗粒增强镁基复合材料界面的理论研究较少,大多研究仅停留在表征层面等问题。本文采用第一性原理方法,计算了四种不同SiC(0001)/Mg(0001)界面模型的电荷密度、布局分析和界面分离功。结果表明:对于同种终端的SiC(0001)/Mg(0001)界面模型中,顶位型结构比心位型结构的稳定性好;不同终端的SiC(0001)/Mg(0001)的界面模型中,Si终端结构比C终端结构更加稳定,其中Si终端顶位型结构稳定性最好,其分离功为Wsep=3.297 J/m2,界面间距为d0=2.651nm。界面的键合方式主要为C-Mg共价键和Mg-Si离子键。  相似文献   

11.
Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy   总被引:1,自引:0,他引:1  
Calcium phosphates (CaPs) and silicon containing calcium phosphates (Si-CaPs) coatings on a biodegradable magnesium yttrium alloy (Mg4Y) were prepared by a sol-gel technique to improve the bioactivity of the alloy surface. The experimental results show that thick porous coatings comprised of nano-sized calcium phosphate particles can be prepared by heating the as dip coated substrates at 450 °C. The in vitro degradation results show that the coatings do not alter the degradation kinetics of the substrates significantly and the release of magnesium and yttrium ions at initial time points was very similar for both the coated and bare substrates. The cyto-compatibility studies using MC3T3-E1 osteoblasts show that the coated substrates were more bioactive than the uncoated substrates as the cells begin to grow and form a matrix on the coated substrates more easily than on the bare metal. These preliminary results collectively show the potential of use of sol-gel derived calcium phosphate coatings on magnesium based degradable scaffolds to improve their surface bioactivity.  相似文献   

12.
Fluoridated hydroxyapatite (FHAp) was successfully synthesized from the starting materials of CaCO3, CaHPO4·2H2O, and CaF2 via a mechanochemical-hydrothermal route. X-ray diffraction, infrared spectroscopy, surface area measurements, and scanning electron microscopy identified the resultant powders as FHAp nanocrystals with the specific surface areas of up to 114.72 m2/g. The mechanism study revealed that under such mechanochemical-hydrothermal conditions the formation reactions of FHAp were completed in two stages. The starting materials firstly reacted into a poorly crystallized calcium-deficient apatite and the complete incorporation of fluoride ions into apatite occurred in the second stage.  相似文献   

13.
In this work we investigated the possibilities to reduce the porosity of thin protective zirconium oxide films deposited with the sol-gel technique at low temperatures. Electrochemical investigations showed that the concentration of the stabilizing agent acetylacetone is a crucial parameter for the protection performance of the zirconium oxide films and that it is possible to run the deposition process at much lower temperatures with the optimum stabilizer concentration. This allows the application of the process to sensitive substrates that cannot be treated at high temperatures and reduces energy costs as well. Characterization of the film structure with secondary ion mass spectrometry revealed that the stabilizing agent is responsible for the formation of a mixed oxide layer at the interface of substrate and coating. The thickness of this layer can be tuned with the concentration of the stabilizing agent.  相似文献   

14.
Pin-on-disc wear experiments have been carried out on sol-gel silica coatings reinforced with 0.1 wt.% carbon nanotubes (CNTs) deposited on WE54 magnesium alloy substrates by the dip-coating technique. Sol-gel solutions were fabricated using two different procedures: mechanical mixing (MM) and ultrasonic probe mixing. Dry sliding wear tests have been carried out at load of 1 N, speed of 0.1 m/s and sliding distance of 60 m. Friction coefficients were obtained from the tests and the specific wear rates (k) were calculated. The fabrication procedure of the coating influences its morphology and wear resistance. Friction coefficient was found to vary slightly with the addition of the CNTs. The wear volume of the magnesium substrate coated decreased by 40% and 80%, in terms of k, by using unreinforced and CNT-reinforced MM coatings, respectively. In MM layers reinforced with CNT uniform dispersion of the nanotubes was reached and toughening of the ceramic coating by pull-out and crack bridging mechanisms was observed.  相似文献   

15.
Silicon-substituted hydroxyapatite (Si-HA) coatings on commercially pure titanium (Ti) were prepared by aerosol deposition using Si-HA powders. Si-HA powders with the chemical formula Ca10(PO4)6 − x(SiO4)x(OH)2 − x, having silicon contents up to x = 0.5 (1.4 wt.%), were synthesized by solid-state reaction of Ca2P2O7, CaCO3, and SiO2. The Si-HA powders were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. The corresponding coatings were also analyzed by XRD, scanning electron microscopy, and electron probe microanalyzer. The results revealed that a single-phase Si-HA was obtained without any secondary phases such as α- or β-tricalcium phosphate for both the powders and the coatings. The Si-HA coating was about 5 µm thick, had a dense microstructure with no cracks or pores, and showed a high adhesion strength ranging from 28.4 to 32.1 MPa. In addition, the proliferation and alkaline phosphatase activity of MC3T3-E1 preosteoblast cells grown on the Si-HA coatings were significantly higher than those on the bare Ti and pure HA coating. These results revealed the stimulatory effects induced by silicon substitution on the cellular response to the HA coating.  相似文献   

16.
On ice-releasing properties of rough hydrophobic coatings   总被引:4,自引:0,他引:4  
In this work, ice repellency of rough hydrophobic coatings based on different materials and with different surface topographies is evaluated. The coatings were prepared either from a fluoropolymer incorporated with nanoparticles or by etching aluminum alloy substrate followed by further hydrophobization of the rough surface via an organosilane monolayer adsorbed from solution. This allowed comparing the ice-releasing performance of rough surfaces with high water contact angles (∼ 150-153°) and different dynamic hydrophobicities and mechanical properties. Artificially created glaze ice, similar to naturally occurring glaze, was accreted on the surfaces by spraying supercooled water microdroplets in a wind tunnel at subzero temperature. The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speeds until ice detachment occurred. The results showed that, after several icing-deicing cycles, the more robust surfaces prepared by etching the aluminum substrate maintained their ice-releasing properties better, compared to their counterparts based on nanoparticle-incorporated fluoropolymer. The effect of the dynamic hydrophobicity of the coatings was also examined, clearly demonstrating that the surface with low dynamic hydrophobicity is not ice-repellent, although it demonstrates large values of water contact angle.  相似文献   

17.
Hydroxyapatite, an important bioceramic was synthesized in the bulk form and developed as a coating by a sol-gel route using alcoholic precursor. The bioactive coating was developed on bio-inert α-alumina and yttria stabilized zirconia substrates. The apatite phase began to form after the heat treatment of the precursor at 500 °C for 10 min. The complete crystallization of the apatite was obtained at 800 °C heat treatment for 10 min. The phase composition of the bulk and the coatings was identified by FT-IR spectroscopic and powder X-ray diffraction (XRD) techniques. Surface morphology was determined by scanning electron microscopy. The study indicates different surface textures for the powder and for the coatings on α-alumina and yttria stabilized zirconia substrates.  相似文献   

18.
研究利用造孔剂法制备高度贯通的多孔羟基磷灰石(HA)支架,孔隙率约为78%,并利用聚己内酯(PCL)分别复合纳米HA(nHA)或微纳米生物玻璃(nBG)粉末对其进行涂覆改性,粉末的添加量均为10%~40%(质量分数)。4种类型支架分别记为HA、PCL/HA、nHA-PCL/HA和nBG-PCL/HA。实验结果发现,nHA-PCL/HA和nBG-PCL/HA复合支架最大抗压强度分别为1.41~1.98 MPa和1.35~1.78MPa。4类支架矿化实验显示,浸泡21d后nBG-PCL/HA表面促进生成较多的磷灰石矿化物;细胞实验结果显示细胞在4类支架上均生长良好,说明支架具有良好的生物相容性。支架在实验犬背部肌肉组织内植入2个月的组织学检测显示,4种支架内均有新骨形成,尤其是nHA-PCL/HA和nBG-PCL/HA孔内有更多的新生骨组织,说明这两种支架表面复合涂层中的生物活性纳米颗粒对诱导新骨生成具有积极的促进作用。  相似文献   

19.
Hydroxyapatite coatings were synthesized electrochemically onto stainless steel. In this study, the composition and morphology of the coatings changed with the deposition and sintering conditions. The electrolyte was kept close to the composition of simulated body fluid with an adjusted pH of 8.0. Deposition temperature affected the purity of the deposits with higher temperatures (65 °C) giving better coatings. The sintering techniques were also shown to affect the deposits, with x-ray diffraction patterns showing well-defined peaks for hydroxyapatite when sintering under vacuum conditions. Coating density and corrosion resistance was improved when applying a double-layer coating technique versus a single-layer. Grain sizes were 30 to 40 nm even after sintering of these coatings in air. The formed coatings were characterized by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy.  相似文献   

20.
Optical properties and in-depth structure of double-layer coatings on glass substrates were investigated. One of the layers was prepared by dip coating either from silica or titania sol, the other layer was made from ca. 130 nm Stöber silica particles by the Langmuir-Blodgett (LB) technique. Two different types of combined coatings were prepared: (1) nanoparticulate LB films coated with sol-gel (SG) films and (2) nanoparticulate LB films drawn onto SG films.Scanning electron microscopy and optical methods, i.e. UV-vis spectroscopy and scanning angle reflectometry were applied for analyzing the structure and thickness of coatings. These measurements revealed that the precursor sols could not penetrate into the particulate LB film completely in case of coating type (1). For coating type (2) very little overlap between the SG and LB layers was found resulting in significant improvement of light transmittance of combined coatings compared to single SG films.To show some possible advantages of the combination of these techniques additional studies were carried out. Surface morphology of combined coatings (1) was studied by atomic force microscopy. Surfaces with different roughness were developed depending on the thickness of the sol-gel film (titania: ca. 70 nm; silica: ca. 210 nm). The adhesive peel off test revealed improved mechanical stability of combined coatings (2), in comparison to LB films which makes them good candidates for further applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号