首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
生物医用无Ni超弹性β钛形状记忆合金研究进展   总被引:3,自引:0,他引:3  
概述了以TiNi合金和β钛合金为代表的生物医用金属材料的使用特性,包括生物相容性和生物力学适应性,介绍了形状记忆和超弹性TiNb基β钛合金医用材料的研究发展状况和最新进展,指出了生物医用钛合金应用技术的研究发展方向.开发不含Ni的低弹性模量、优异生物相容性和生物力学适应性的TiNb基形状记忆和超弹性β钛合金成为生物医用材料发展的一个重要方向.  相似文献   

2.
钛及钛合金具有高比强度、低的弹性模量、无磁性以及优异的生物相容性和耐腐蚀性能等特点,被认为是理想的生物医用金属材料。以无毒性的Nb,Mo,Ta,Zr和Sn等作为主要合金化元素,并具有更低弹性模量的亚稳β型钛合金是新一代医用钛合金材料的重点发展方向。本文综述了生物医用钛合金的基本特性和发展概况,并以Ti-Nb基医用钛合金为例,介绍了新型亚稳β生物医用钛合金的成分设计方法、合金化原理、研究现状和制备技术。最后指出进一步降低弹性模量,提高强度、疲劳性能和功能特性等综合性能是生物医用β钛合金重点的发展方向,今后可以针对合金化元素的交互作用机理、合金成分设计与组织性能调控方法以及微观力学机制等问题开展深入研究。  相似文献   

3.
介绍了生物医用钛合金材料的定义、分类与基本特性,综述了国内外生物医用钛合金材料的发展历程,针对改善和提高医用钛合金材料的生物相容性和力学相容性问题,重点分析和讨论了医用钛合金在合金设计、显微组织和相变控制以及表面状态优化等方面存在的不足和未来研究方向,最后介绍了新型介稳定β型钛合金在设计、开发与应用方面的最新进展。  相似文献   

4.
钛及钛合金具有高比强度、低的弹性模量、无磁性以及优异的生物相容性和耐腐蚀性能等特点,被认为是理想的生物医用金属材料。以无毒性的Nb, Mo, Ta, Zr和Sn等作为主要合金化元素,并具有更低弹性模量的亚稳β型钛合金是新一代医用钛合金材料的重点发展方向。本文综述了生物医用钛合金的基本特性和发展概况,并以Ti-Nb基医用钛合金为例,介绍了新型亚稳β生物医用钛合金的成分设计方法、合金化原理、研究现状和制备技术。最后指出进一步降低弹性模量,提高强度、疲劳性能和功能特性等综合性能是生物医用β钛合金重点的发展方向,今后可以针对合金化元素的交互作用机理、合金成分设计与组织性能调控方法以及微观力学机制等问题开展深入研究。  相似文献   

5.
钛及钛合金材料因其优良的综合性能,在生物医用材料中占有越来越重要的地位。综述了生物医用钛及钛合金材料发展的3个历史阶段,重点评述了低弹性模量β型钛合金的研发现状,简单介绍了相关钛合金材料制品在医学临床中的实际应用,并分析了近年来表面改性、多孔材料、复合材料等生物医用钛合金材料发展的新趋势。  相似文献   

6.
近年来,医用钛合金的研发趋势是开发具有良好机械加工性能的无毒无过敏元素的低刚度β型钛合金. 日本研究者根据纯细胞毒性、极化抗力数据、生物医用金属材料和纯金属的生物相……  相似文献   

7.
生物医用材料及制品是近30年来发展起来的一类技术附加值最高的高新技术产品,其作用药物不能替代。近10年来,生物材料和制品的世界市场增幅百分率一直保持在两位数左右,发展趋势可与汽车和信息产业相比,正在成长为世界经济的一个新的支柱性产业,而生物材料的研发已成为世界研究热点。钛合金是一种继不锈钢、钴铬合金和TiNi形状记忆合金之后可用于人体软、硬组织修复与替代较理想的外科植入物用首选材料,它先后经过了第一代材料纯钛(α型)和Ti6Al4V合金(α β型)和第二代无钒的α β型钛合金Ti6Al7Nb和Ti5Al2.5Fe以及以β型钛合金为主的第三代新型医用钛合金(如Ti-13Nb-13Zr)的发展历程,其出发点是寻找生物相容性更好(不含对人体有毒的元素)、与人体骨骼力学相容性更加匹配(降低弹性模量、减小对骨组织的“应力屏蔽“)且综合性能优良的钛合金材料。综述了国际上生物医用钛合金的研发历史和现状,重点介绍了国际上正在热点研究的新型β型医用钛合金材料的合金设计、加工制备及其组织与性能控制和在骨科与血管介入领域的应用现状,特别是介绍了我国自主开发的两种新型医用β型钛合金的研究及其相关医疗器械产品研制情况,最后指出了医疗器...  相似文献   

8.
介稳定β型钛合金具有低密度、高比强度、低模量、耐蚀、易加工且生物相容性优良等特点,已成为外科植入件优选的替代材料.本文重点介绍了用于人体硬组织修复与替代材料的介稳定β型生物医用钛合金的设计、熔炼、加工、热处理、显微组织以及表面改性等方面应注意的问题和最新研究进展,并指出了未来的研究发展方向.  相似文献   

9.
医用钛合金的发展及研究现状   总被引:41,自引:1,他引:40  
纯钛及其合金以其与骨相近似性的弹性模量、良好的生物相容性及在生物环境下优良的抗腐蚀性等在临床上得到了越来越广泛的应用;综述了医用钛合金的发展和研究现状,阐述了钛的生物相容性原理,同时简单评述了钛及其合金表面改性与钛基复合材料的研究现状,分析表明:纯钛及其合金具有出色的生物相容性主要归功于表面附着的氧化层;β型钛合金与α/α β型钛合金相比,具有较高的耐磨性,是一种很有前途的外科植入用钛合金;寻求更为理想的表面改性工艺从而获得高质量的涂层,或将生物活性相添加进钛合金基体中制备成复合材料是提高医用钛合金生物活性的两种有效途径。  相似文献   

10.
α,α+β钛合金的弹性模量在100~120 GPa之间,β钛合金的弹性模量较低,可以达到40~50 GPa,主要用作生物医用植入材料.目前开发的低模量钛合金有Ti-Nb-Ta-Zr系亚稳β钛合金,Ti-Nb-Ta-Zr,Ti-Nb-Ta-Mo,Ti-Nb-Ta-Sn四兀β钛合金和Ti-Nb-Sn系亚稳β钛合金.  相似文献   

11.
新型β钛合金具有良好的耐磨性和力学性能、高抗腐蚀性以及优良的生物相容性,因而在生物医学领域得到了越来越广泛的应用.综述了钛合金的发展阶段及新型超弹性β钛合金的研究发展状况和最新进展,探讨了几种热处理工艺对钛合金超弹性的影响,介绍了几种钛合金表面改性方法,结合我国研究现状提出了新型超弹性β钛合金存在的问题,展望了其研究发展方向.  相似文献   

12.
生物医学钛合金的研究现状及发展趋势   总被引:3,自引:0,他引:3  
本文在回顾生物医学钛合金发展历史的基础上 ,综述了国外近年来新开发的生物医学钛合金的组成及性能 ,提出了我国生物医学钛合金的发展方向。  相似文献   

13.
A neural-network machine called “βLow” enables a high-throughput recommendation for new β titanium alloys with Young’s moduli lower than 50 GPa. The machine was trained by using a very general approach with small data from experiments. Its efficiency and accuracy break the barrier for alloy discovery. βLow’s best recommendation, Ti-12Nb-12Zr-12Sn (in wt.%) alloy, was unexpected in previous methods. This new alloy meets the requirements for bio-compatibility, low modulus, and low cost, and holds promise for orthopedic and prosthetic implants. Moreover, βLow’s prediction guides us to realize that the unexplored space of the chemical compositions of low-modulus biomedical titanium alloys is still large. Machine-learning-aided materials design accelerates the progress of materials development and reduces research costs in this work.  相似文献   

14.
医用钛合金表面改性研究进展   总被引:4,自引:1,他引:4  
黄伟九  李兆峰 《材料导报》2006,20(Z2):369-372
钛合金作为人体硬组织替代物和修复物的首选材料在临床上得到广泛的应用.分析了目前医用钛合金存在的主要问题:生物活性、耐磨性和耐腐蚀性有待进一步提高,指出表面改性是改善上述问题的有效途径;综述了人体植入钛合金表面改性的研究进展,并展望了钛合金表面改性的发展趋势.  相似文献   

15.
Titanium alloys, because of their excellent mechanical, physical and biological performance, are finding ever-increasing application in biomedical devices. This paper provides an overview of titanium alloy use for medical devices, their current status, future opportunities and obstacles for expanded application. The article is divided into three main sections, the first discussing recent efforts focused on commercial purity titanium. This is followed by considering effects of chemistry, grain size and α/β morphologies on mechanical properties of α + β alloys. Finally, the third section reviews the status of metastable β alloys specifically designed for biomedical applications emphasizing their aging behavior and its effects on mechanical properties.  相似文献   

16.
In this study,a novel strategy for developing α+β dual-phase titanium alloys with low Young's modulus and high yield strength was proposed,and a Ti-15Nb-5Zr-4Sn-1Fe alloy was developed through theoret-ical composition design and microstructure manipulation.After hot-rolling and subsequent annealing,a high volume fraction of ultrafine grained α phase embedded in metastable β-matrix was formed in the microstructure as intended.Consequently,this alloy exhibits both low Young's modulus(61 GPa)and high yield strength(912 MPa).The experimental results prove that the proposed strategy is appropriate for developing titanium alloys with superior yield strength-to-modulus ratio than those of conven-tional metallic biomedical materials.Present study might shed light on the research and development of advanced biomedical titanium alloys with low Young's modulus and high yield strength.  相似文献   

17.
Developing the new titanium alloys with excellent biomechanical compatibility has been an important research direction of surgical implants materials. Present paper summarizes the international researches and developments of biomedical titanium alloys. Aiming at increasing the biomechanical compatibility, it also introduces the exploration and improvement of alloy designing, mechanical processing, microstructure and phase transformation, and finally outlines the directions for scientific research on the biomedical titanium alloys in the future.  相似文献   

18.
β-type titanium alloys consisting of non-toxic elements, Ti–8Fe–8Ta, Ti–8Fe–8Ta–4Zr, and Ti–10Fe–10Ta–4Zr, were newly designed and developed for biomedical applications. Changes in the mechanical properties of the designed alloys with various heat treatments were discussed on the basis of the resultant microstructures. In addition, the corrosion resistance of the designed alloys was evaluated by polarization testing in Hank's solution. Conventional biomedical titanium (cp-Ti) and the titanium alloy Ti–6Al–4V ELI were also polarized for comparison.The structural phase of the designed alloys, after cold rolling and solution treatment, was only the β phase. Ultimate tensile strength and elongation to fracture of Ti–8Fe–8Ta, Ti–8Fe–8Ta–4Zr, and Ti–10Fe–10Ta–4Zr after solution treatment were 1066 MPa and 10%, 1051 MPa and 10%, and 1092 MPa and 6%, respectively. Ti–8Fe–8Ta and Ti–8Fe–8Ta–4Zr have higher strength than those of conventional biomedical titanium alloys such as Ti–6Al–4V ELI, Ti–6Al–7Nb, and Ti–13Nb–13Zr. In particular, the elongations at failure of Ti–8Fe–8Ta and Ti–8Fe–8Ta–4Zr were equal to those of Ti–6Al–4V ELI and Ti–6Al–7Nb. The designed alloys and conventional biomedical titanium alloys were spontaneously passivated in Hank's solution. The current density of cp-Ti and Ti–6Al–4V ELI was increased at a potential above 2.5 V. On the other hand, the current density of the designed alloys abruptly increased at a potential above 3.5 V. The designed alloys have the advantage over cp-Ti and Ti–6Al–4V ELI in their high resistance to pitting corrosion in biological environments.Therefore, new β-type titanium alloys designed in this study, Ti–8Fe–8Ta and Ti–8Fe–8Ta–4Zr, are expected to have good properties as biomaterials.  相似文献   

19.
Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloyfor the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc.has been recently proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号