首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325 × 2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3–24.2 K), pressures (100–350 kPa), and flow rates (0.010–0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.  相似文献   

2.
J.M. Jurns  J.W. Hartwig 《低温学》2012,52(4-6):283-289
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth’s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA’s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.  相似文献   

3.
《低温学》2006,46(2-3):118-125
Experimental results are presented for pressure–volume–temperature (PVT) liquid quantity gauging of a 0.17 m3 liquid nitrogen tank pressured with ambient temperature helium in the normal gravity environment. A previously reported PVT measurement procedure has been improved to include helium solubility in liquid nitrogen. Gauging data was collected at nominal tank fill levels of 80%, 50% and 20% and at nominal tank pressures of 0.3, 1.0, and 1.7 MPa. The test tank was equipped with a liquid pump and spray manifold to circulate and mix the fluid contents and therefore create near-isothermal conditions throughout the tank. Silicon diode sensors were distributed throughout the tank to monitor temperatures. Close-spaced arrays of silicon diode point sensors were utilized to precisely detect the liquid level at the nominal 80%, 50%, and 20% fill levels. The tests simulated the cryogenic tank-side conditions only; helium mass added to the tank was measured by gas flowmeters rather than using pressure and temperature measurements from a dedicated helium supply bottle. Equilibrium data for cryogenic nitrogen and helium mixtures from numerous sources was correlated to predict soluble helium mole fractions. Results show that solubility should be accounted for in the PVT gauging calculations. Mole fractions predicted by Dalton’s Law were found to be in good agreement with the compiled equilibrium data within the temperature–pressure range of interest. Therefore, Dalton’s Law was deemed suitable for calculating ullage composition. Gauging results from the PVT method agreed with the reference liquid level measurements to within 3%.  相似文献   

4.
LCH4 testing was conducted at the Marshall Space Flight Center using the multipurpose hydrogen test bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid.  相似文献   

5.
Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of subcooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: “To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs?” Testing was first conducted with water as the test fluid, followed by liquid nitrogen (LN2) tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, 200 × 1400 and 325 × 2300, both with Twill Dutch Weave. Upon consideration of both the water and LN2 data, it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.  相似文献   

6.
New vehicles need improved cryogenic propellant storage and transfer capabilities for long duration missions. Multilayer insulation (MLI) for cryogenic propellant feedlines is much less effective than MLI tank insulation, with heat leak into spiral wrapped MLI on pipes 3–10 times higher than conventional tank MLI. Better insulation for cryogenic feed lines is an important enabling technology that could help NASA reach cryogenic propellant storage and transfer requirements. Improved insulation for Ground Support Equipment could reduce cryogen losses during launch vehicle loading. Wrapped-MLI (WMLI) is a high performance multilayer insulation using innovative discrete spacer technology specifically designed for cryogenic transfer lines and Vacuum Jacketed Pipe (VJP) to reduce heat flux.The poor performance of traditional MLI wrapped on feed lines is due in part to compression of the MLI layers, with increased interlayer contact and heat conduction. WMLI uses discrete spacers that maintain precise layer spacing, with a unique design to reduce heat leak. A Triple Orthogonal Disk spacer was engineered to minimize contact area/length ratio and reduce solid heat conduction for use in concentric MLI configurations.A new insulation, WMLI, was developed and tested. Novel polymer spacers were designed, analyzed and fabricated; different installation techniques were examined; and rapid prototype nested shell components to speed installation on real world piping were designed and tested. Prototypes were installed on tubing set test fixtures and heat flux measured via calorimetry. WMLI offered superior performance to traditional MLI installed on cryogenic pipe, with 2.2 W/m2 heat flux compared to 26.6 W/m2 for traditional spiral wrapped MLI (5 layers, 77–295 K). WMLI as inner insulation in VJP can offer heat leaks as low as 0.09 W/m, compared to industry standard products with 0.31 W/m. WMLI could enable improved spacecraft cryogenic feedlines and industrial hot/cold transfer lines.  相似文献   

7.
Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22–24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.  相似文献   

8.
The medium strength aluminum alloy AFNOR 7020 (Al–4.5Zn–1.5Mg) is extensively used in the fabrication of common bulk head propellant tank of liquid propulsion engine. The rings used in fabrication of the tank were of different sizes and were processed almost 4 years back in T651 condition. The propellant tank developed a leak at 2.7 bar(a) during proof pressure charging to 5 bar. The cracked portion of the ring was removed from the failed tank and subjected to detailed metallurgical investigations to understand the cause of failure. This paper brings out the details of investigations carried out and thereafter conclusion arrived on.  相似文献   

9.
One of the most important issues in a liquid propellant rocket is to measure the amount of remaining liquid propellant under low gravity environment during space mission. This paper presents the results of experiment and analysis of a pressure–volume–temperature (PVT) method which is a gauging method for low gravity environment. The experiment is conducted using 7.4 l tank for liquid nitrogen with various liquid-fill levels. To maximize the accuracy of a PVT method with minimum hardware, the technique of a helium injection with low mass flow rate is applied to maintain stable temperature profile in the ullage volume. The PVT analysis considering both pressurant and cryogen as a binary mixture is suggested. At high liquid-fill levels of 72–80%, the accuracy from the conventional PVT analysis is within 4.6%. At low fill levels of 27–30%, the gauging error is within 3.4% by mixture analysis of a PVT method with specific low mass flow rate of a helium injection. It is concluded that the proper mass flow rate of a helium injection and PVT analyses are crucial to enhance the accuracy of the PVT method with regard to various liquid-fill levels.  相似文献   

10.
This paper presents a numerical model of a system-level test bed—the multipurpose hydrogen test bed (MHTB) using the Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a space transportation vehicle liquid hydrogen propellant tank, and ground-based testing was performed at NASA Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume-based network flow analysis software developed at MSFC and used for thermofluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by the Thermodynamic Vent System (TVS). A TVS typically includes a Joule–Thompson (J–T) expansion device, a two-phase heat exchanger (HEX), and a mixing pump and liquid injector to extract thermal energy from the tank without significant loss of liquid propellant. For the MHTB tank, the HEX and liquid injector are combined into a vertical spray bar assembly. Two GFSSP models (Self-Pressurization and TVS) were separately developed and tested and then integrated to simulate the entire system. The Self-Pressurization model consists of multiple ullage nodes, a propellant node, and solid nodes; it computes the heat transfer through multilayer insulation blankets and calculates heat and mass transfer between the ullage and liquid propellant and the ullage and tank wall. A TVS model calculates the flow through a J–T valve, HEX, and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. Results of the integrated models have been compared with MHTB test data at a 50% fill level. Satisfactory comparison was observed between tests and numerical predictions.  相似文献   

11.
A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2–10 L/min, into a head of 0.5–3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50–100 days without maintenance.  相似文献   

12.
In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50–60 MW of chemical power and ∼50–75 MW of electrical power, i.e. up to ∼135 MW in total.  相似文献   

13.
This paper is concerned with the design, development and performance testing of a cryogenic system for use in high cooling power instruments for ground-based environmental testing. The system provides a powerful tool for a combined environmental test that consists of high pressure and cryogenic temperatures. Typical cryogenic conditions are liquid hydrogen (LH2) and liquid oxygen (LO2), which are used in many fields. The cooling energy of liquid nitrogen (LN2) and liquid helium (LHe) is transferred to the specimen by a closed loop of helium cycle. In order to minimize the consumption of the LHe, the optimal design of heat recovery exchangers has been used in the system. The behavior of the system is discussed based on experimental data of temperature and pressure. The results show that the temperature range from room temperature to LN2 temperature can be achieved by using LN2, the pressurization process is stable and the high test pressure is maintained. Lower temperatures, below 77 K, can also be obtained with LHe cooling, the typical cooling time is 40 min from 90 K to 22 K. Stable temperatures of 22 K at the inlet of the specimen have been observed, and the system in this work can deliver to the load a cooling power of several hundred watts at a pressure of 0.58 MPa.  相似文献   

14.
《Advanced Powder Technology》2014,25(4):1205-1211
This study is concerned with a common class of problem involving two phase separation of a dispersed gas flow from a continuous liquid flow under extreme processing conditions. Relatively fine spherical bubbles of order 500 μm were generated in the presence of a surfactant under a high shear rate within a rectangular, multi-channeled, cuboidal downcomer. Liquid fluxes, as high as 176 cm/s through each channel of the downcomer, sheared bubbles from a sintered surface mounted flush to the channel wall before disengaging the downcomer flow into a vertical vessel. Both high feed fluxes, up to 15 cm/s, and high gas fluxes, up to 5.5 cm/s, ensured a high gas holdup beneath the downcomer and the hindered rising of the bubbles. Enhanced bubble–liquid segregation was achieved using an arrangement of parallel inclined channels incorporated below the main vertical chamber. This novel device, referred to as the Reflux Flotation Cell, prevented the entrainment of bubbles to the underflow, and significantly reduced the liquid flux to overflow, even in the absence of a conventional froth zone. Extreme upward bubble surface fluxes of up to 600 s−1 were achieved, while counter-current downward liquid fluxes reached 14.4 cm/s, arguably four times the bubble terminal rise velocity. Hence successful phase separation was achieved while operating well beyond the so-called flooding condition arising from extreme levels of gas and feed fluxes. This hydrodynamic arrangement should find application in increasing surfactant extraction rates in foam fractionation and ion flotation, gas absorption, and even particulate flotation.  相似文献   

15.
This study presents the theoretical basis for the dynamics of a slug of liquid oxygen in a quartz tube when displaced by a pulsed magnetic field. The theoretical model calculated slug movement by balancing the forces due to magnetism, pressure, and damping and was verified with experimental data for a slug 1.3 cm long and 1.9 mm in diameter. During the experiments, the hidden slug length and damping factor were unknown, but quantifiable through the numerical solution. The hidden slug length accounted for the mass of LOX which cannot be seen during the experiment and was calculated as 10–14.5 cm. The damping factor was an empirical augmentation to represent increased damping from various phenomena and was calculated as 5.76–6.3. The experiments generated damped pressure waves of 6–8 Hz with maximum amplitudes of 0.8–1.3 kPa. Outside these ranges, the model indicated that the oscillation frequency decreased logarithmically with the hidden slug length, and the maximum amplitude decreased logarithmically with the damping factor. Measurement uncertainties of the visible length and slug initial position (0.8 mm) were also evaluated for their effects on the frequency and amplitude of the oscillations. The visible slug length did not seem to significantly affect the pressure waves, but the initial position strongly altered the amplitudes and mean of the oscillations. The predictive model matched the experiment well and could be used to design advanced flow control systems for cryogenic applications.  相似文献   

16.
A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 × 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule–Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.  相似文献   

17.
18.
Strain induced grain refinement of an Al–1 wt.% Mg alloy processed by equal channel angular pressing (ECAP) at cryogenic temperature is investigated quantitatively. The results show that both mean grain and subgrain sizes are reduced gradually with increasing ECAP pass. ECAP at cryogenic temperature increases the rate of grain refinement by promoting the fraction of high angle grain boundaries (HAGBs) and misorientation at each pass. The fraction of HAGBs and the misorientation of Al–1 wt.% Mg alloy during ECAP at cryogenic temperature increase continuously as a function of equivalent strain. Both {110} and {111} twins at ultrafine-grained size are observed firstly in Al–Mg alloy during ECAP. The analysis of grain boundaries and misorientation gradients demonstrates the grain refinement mechanism of continuous dynamic recrystallization.  相似文献   

19.
ASTRO-H is the sixth Japanese astronomy satellite scheduled for launch in 2014. The Soft X-ray Spectrometer instrument is onboard ASTRO-H. This is a 6 × 6 array of X-ray microcalorimeters with an energy resolution of <7 eV at 0.5–10 keV. Superfluid liquid helium is utilized as a part of the cooling system. To retain the liquid helium in the tank under zero-gravity, a porous plug phase separator made of sintered stainless is used. Since the vapor mass flow rate is only 29 μg/s, any additional superfluid film loss influences the lifetime of the liquid helium. Therefore, a film flow suppression system consisting of an orifice, a heat exchanger, and knife edge devices is adopted based on the design used for the X-ray Spectrometer onboard Suzaku. The film flow will be suppressed to <2 μg/s, sufficiently smaller than the vapor flow rate. In the present investigation, the design and ground experiments of a helium vent system composed of the porous plug and film flow suppression system are presented. The results show that the phase separation and the film flow suppression are satisfactorily achieved.  相似文献   

20.
In the present work, a cryogenic mechanical property testing system conduction-cooled by two G-M cryocoolers was developed. The testing sample can be cooled from room temperature to 2.7 K within 7.5 h. The sample was first cooled down to 11.1 K directly by the two G-M cryocoolers and then cooled down to 2.7 K by decompressing the chamber. Instead of liquid helium, the cooling process is characterized by cooling with recycled helium gas as heat transfer medium. The heat load of the system was analyzed and optimizations were adopted in terms of material selections and design. The static load capacity of the system reaches 200 kN and the fatigue load capacity can reach 50 kN. This system can be installed onto an electronic universal testing machine or a fatigue testing machine to characterize static tension, fracture mechanics or fatigue properties at tunable low temperatures. Tensile properties of 316L austenitic stainless steels at 4.2 K were tested with the system and the results were compared with those obtained by cooled using liquid helium, which demonstrates high reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号