首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tris(2,2'-bipyridyl)ruthenium (II) (Ru(bpy)2+) electrogerated chemiluminescence (ECL) sensor was fabricated by immobilization of Ru(bpy)2+ complex on conducting polymer@SiO2/Nafion composite film on surface of glassy carbon electrode. The conducting polymer@SiO2 nanocomposites were prepared by coating polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh) on the surface of the SiO2 sphere. The conducting polymer@SiO2 nanocomposite was characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and atomic force microscopy (AFM). The sensitivity and reproducibility of the prepared ECL sensor to tripropylamine (TPA) was evaluated. As a result, the PPy@SiO2 composite electrode exhibited high sensitivity and good reproducibility compared to that obtained with PANI@SiO2 and PTh@SiO2 composite electrodes because of the strong interaction between PPy@SiO2 and Ru(bpy)2+ complex.  相似文献   

2.
Composites of multiwall carbon nanotubes (MWNTs), polyaniline (PANI), and gold nanoparticles were prepared by one pot synthesis. Based on the interaction between aniline monomers and MWNTs, aniline molecules were adsorbed and polymerized on the surface of MWNTs. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoemission spectroscopy (XPS). The sensors based on Au/PANI/MWNT nanocomposites were tested for on-line monitoring of ammonia gas. The results show that the as-prepared sensors have superior sensitivity, and good repeatability upon repeated exposure to ammonia gas.  相似文献   

3.
In this work, polyaniline (PANI) nanofibrous networks were prepared using ionic liquid (IL), 1-hexadecyl-3-methylimidazolium chloride (C16MIMCl), as a template through oxidative polymerization of aniline with ammonium persulfate. The resulting PANI was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis, and FTIR. It was indicated that the as-prepared PANI was in the emeraldine form and its morphology strongly depended on the molar ratio of aniline/C16MIMCI. A possible mechanism for the formation of PANI nanofibrous networks was that the ordered micro-domains of the IL acted as template to direct the growth of the nanostructures.  相似文献   

4.
An easy process for the synthesis of polyaniline/graphite nanosheets (PANI/NanoG) composites was developed. NanoG were prepared by treating the expanded graphite with sonication in aqueous alcohol solution. Scanning electron microscopy (SEM), X-ray diffraction techniques (XRD), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) were used to characterize the structures of NanoG and PANI/NanoG conducting composites. Electrical conductivity measurements indicated that the percolation threshold of PANI/NanoG composites at room temperature was as low as 0.32 vol.% and the conductivity of PANI/NanoG composites was 420 S/cm. The percolation theory, mean-field theory, and excluded volume theory were applied to interpret the conducting properties. Results showed that the low value of percolation threshold may be mainly attributed to nanoscale structure of NanoG forming conducting bridge in PANI matrix and there exists contact resistance in the percolation network formed within PANI/NanoG composites.  相似文献   

5.
In this article, the highly ordered polyaniline (PANI) nanotubes array was prepared by in situ polymerization using anodic aluminum oxide (AAO) as template. Polymerization of aniline was confined in the one-dimensional nanochannel of AAO template. The aniline was adsorbed and polymerized preferentially on the pore walls of template. The structure of PANI nanotubes array was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), selected area electron diffraction (SAED) and dynamic force microscope (DFM). The results show that PANI nanotubes are synthesized successfully in the nanopores of template, the diameter and length of PANI nanotubes are closed to the pore diameter and thickness of AAO template, respectively, the arrangement of PANI nanotubes is very regular and uniform, the crystal form of PANI nanotubes is hexagonal, different from pseudo-orthorhombic crystal form of PANI bulk sample, and cell parameters a and b are 0.5008 nm. The change of crystal form is due to the confinement of AAO template, which makes the molecular chain of PANI arrange more ordered.  相似文献   

6.
利用垂直沉积自组装技术在氧化铟锡(ITO)导电玻璃基底上制备出高度有序的聚苯乙烯(PS)薄膜,以此为模板,在三电极体系中应用循环伏安法,控制电势在-0.3-0.9V之间,以20mV/S的扫描速度,在有序排列PS薄膜的表面电化学沉积聚苯胺(PANI),成功制备出了聚苯胺/聚苯乙烯(PS/PANI)有序导电高分子复合材料,通过紫外-可见光分光光度计、循环伏安法、场发射扫描电镜、x射线衍射仪进行表征,结果表明,制得的PS/PANI复合材料粒径均匀、排列有序、呈密堆积结构,可为制备具有有序中空或大孔膜产物提供较理想的模板。  相似文献   

7.
Highly ordered polyaniline (PANI) nanorods were prepared by oxidative polymerization in the presence of sucrose stearate surfactant acting as a soft template and acetone as solvent. The polymerized PANI nanorods were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy, and X-ray diffraction (XRD). Results showed that the concentration of sucrose stearate exhibited a strong influence on nanorods diameters, surfaces, and also the crystallinity of PANI. The diameters and crystallinity increase remarkably with increasing the sucrose stearate concentration. A mechanism for the formation of nanorods is also proposed. The steric hindrance of sucrose stearate molecules and hydrogen bonds formed between sucrose stearate and anilium ions or oligomers molecules play an important part in the formation of PANI nanorods.  相似文献   

8.
The preparation of conducting graphene/polyaniline–sodium dodecylbenzenesulfonate (PANI–SDBS) nanocomposites using synthesised graphene as the starting material is successfully conducted in the present study. The effect of the anionic surfactant SDBS on the properties of the graphene/PANI–SDBS nanocomposites is studied. The structure and morphology of the synthesised nanocomposites are characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectrophotometry, X-ray diffraction and atomic force microscopy (AFM). The electrical conductivity properties of the resulting nanocomposites are determined using a resistance meter measurement system. The FESEM and TEM images reveal that the addition of SDBS surfactant to the PANI transforms the nanofibers of the PANI to a nanosphere morphology of PANI–SDBS. FTIR and UV–vis studies reveal that the conductive graphene/PANI–SDBS nanocomposites are successfully synthesised. AFM characterisation shows that the addition of graphene reduces the root mean square roughness of the surface of the PANI. The electrical conductivity and thermal stability of the PANI are improved after the introduction of SDBS. The nanocomposites containing a 5 wt% graphene loading exhibit the highest electrical conductivity of 2.94?×?10?2 S/cm, which is much higher than that of PANI (9.09?×?10?6 S/cm).  相似文献   

9.
主要探讨了固化距离、纺丝电压对聚乙烯醇和淀粉、聚乙烯醇和壳聚糖共混液静电纺丝的影响,并尝试了多喷头静电纺丝制备超细长纤维复合材料。运用扫描电镜、红外光谱和差示扫描量热仪等对制得的超细复合材料的纤维形态、结构和力学性能进行研究,制得了纤维形貌与力学性能优异的、结构均匀的超细长纤维复合毡;多喷头电纺时,溶剂挥发影响着复合毡形态与性能。经过乙醇浸泡处理后,纯聚乙烯醇纳米纤维毡的结晶度和力学性能明显提高。  相似文献   

10.
Electrically conducting nanocomposites of polyaniline (PANI) with carbon-based fillers have evinced considerable interest for various applications such as rechargeable batteries, microelectronics, sensors, electrochromic displays and light-emitting and photovoltaic devices. The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor sulfonic acid (CSA), hydrochloric acid (HCl) and sulfuric acid (H2SO4) on the electrical conductivity of PANI. The morphological, structural and electrical properties of neat PANI and carbon–PANI nanocomposites were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT–IR), UV–Vis spectroscopy and the four-point probe technique, respectively. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) studies were also conducted for different PANI composites. The results show that PANI and carbon–PANI composites with organic acid dopants show good thermal stability and higher electrical conductivity than those with inorganic acid dopants. Also, carbon–PANI composites generally show higher electrical conductivity than neat PANI, with highest conductivities for PANI–CNT composites. Thus, in essence, PANI–CNT composites prepared using organic acid dopants are most suitable for conducting applications.  相似文献   

11.
Yu Q  Shi M  Cheng Y  Wang M  Chen HZ 《Nanotechnology》2008,19(26):265702
Fe(3)O(4)@Au/polyaniline (PANI) nanocomposites were fabricated by in situ polymerization in the presence of mercaptocarboxylic acid. The mercaptocarboxylic acid was used to introduce hydrogen bonding and/or electrostatic interaction; it acts as a template in the formation of Fe(3)O(4)@Au/PANI nanorods. The morphology and structure of the resulting nanocomposites were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, x-ray diffraction and x-ray energy dispersion spectroscopy (EDS). It was found that the nanocomposites were rod-like with an average diameter of 153?nm, and they exhibited a core-shell structure. A UV-visible spectrometer, semiconductor parameter analyzer and vibrating sample magnetometer (VSM) were used to characterize the optical, electrical and magnetic properties of the Fe(3)O(4)@Au/PANI nanocomposites. It was interesting to find that these properties are dependent on the molar ratio of Au to Fe(3)O(4) when the molar ratio of Fe(3)O(4)@Au to PANI is fixed. The magnetic property of the Fe(3)O(4)@Au/PANI nanocomposite is very close to superparamagnetic behavior.  相似文献   

12.
以天然可膨胀石墨(GN)为原材料,采用酸及快速热处理制备了膨胀石墨(EG),再将膨胀石墨置于超声波中制得了纳米石墨微片(NanoG),最后采用原位聚合法制备了聚苯胺/纳米石墨微片(PANI/NanoG)导电复合物。扫描电镜(SEM)显示纳米石墨微片长径为0.8μm~20μm,厚度为30nm~90nm。聚苯胺均匀覆盖在纳米石墨微片表面;透射电镜(TEM)揭示了纳米石墨微片的片层分散在复合物中并形成了导电网络;电性能测试表明,当纳米石墨微片含量为0.5%(质量分数,下同)时,复合物电导率达到107.3S/cm,其渗滤阈值达到0.1%,纳米石墨微片独特的结构(宽度/厚度的高比值)及在聚苯胺中的分散造就了复合物良好的导电性能。  相似文献   

13.
以超细预氧化纤维毡为原料,采用电加热和微波加热方法制备两种超细活性碳纤维吸附剂(UFACF-1、UFACF-2),在相同湿度条件下,对两种超细活性碳纤维的甲醛吸附性能进行测定;采用场发射扫描电镜、傅里叶变换红外-拉曼光谱仪、全自动比表面和孔径分布分析仪对两种超细活性碳纤维吸附剂的纤维形态、结构、比表面积、孔容和孔径分布进行表征;两种超细活性碳纤维在纤维形态、结构和甲醛吸附性能上均有差别,其中,UFACF-1比表面积为805.25m2·g-1,总孔容为0.366cm3·g-1,UFACF-2比表面积为733.32m2·g-1,总孔容为0.386cm3·g-1,UFACF-1甲醛吸附性能优于UFACF-2;UFACF-1含有大量极微孔和含氧官能团,对于室内甲醛处理,是一种有应用潜力的新型吸附材料。  相似文献   

14.
Reported herein is the preparation of a new nanostructured composite consisting of PANI(SH) (where PANI(SH) is poly(aniline-co-4-aminothio phenol)) and gold nanoparticles (AuNPs)) via "seed"-induced bulk polymerization. The PANI(SH)-AuNPs composite was designated as PANI(SH)-Au-NS(P). The composite was characterized in terms of its morphology and structural, thermal, and electrochemical properties. The field emission scanning electron microscopy (FESEM) image of PANI(SH)-Au-NS(P) revealed the presence of PANI(SH) nanospheres (sizes: approximately 150-250 nm) with finely distributed AuNPs (approximately 10 nm). The usefulness of PANI(SH)-Au-NS(P) as an electrocatalyst towards the oxidation of methanol was tested.  相似文献   

15.
Ordered micrometre-sized silica spheres with uniform morphology and mesoporous structures were prepared by a temperature-induced and polyethylene glycol-assisted assembly method. The porous surface of the silica spheres was used for the chemical polymerisation of aniline, as well as a sacrificial template for synthesis of polyaniline (PANI) nanofibres. The morphologies of PANI nanostructures were characterised by scanning electron microscopy and transmission electron microscopy. Microstructural analysis and properties evaluation of the as-prepared products were characterised by X-ray diffraction, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy and N2 adsorption–desorption analysis. TGA results demonstrated that about 95% of the mesoporous material has been utilised for the synthesis of PANI nanofibres. Their electron transfer properties were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy. CV experiment shows that the obtained PANI nanofibres have good electrochemical activity, which can be attributed to a higher number of accessible redox sites available during the synthesis process. The value of time constant (Γ) of PANI nanofibres based electrode was 0.0217?ms. The lower Γ-value is usually preferred for electrochemical capacitor for fast charge–discharge processes; hence, these PANI nanofibres based materials and their composites have the potential to be used as supercapacitor electrodes for supercapacitor applications.  相似文献   

16.
杨博  郭磊  赵芳霞  张振忠 《材料导报》2011,25(20):74-76,79
针对低频频段(<1.5GHz)的电磁屏蔽涂层,采用快速混合法制备出导电聚苯胺纳米线,使用透射电镜(TEM)对其形貌和尺度进行表征,研究了搅拌方式对聚苯胺/聚氨酯涂层的导电性能和电磁屏蔽性能的影响。研究表明,由于磁场的作用,采用电磁搅拌法可以缩短聚苯胺聚合反应时间,合成均一的导电聚苯胺纳米线,其渗滤阈值为33.3%,含量为33.3%的聚苯胺纳米线的聚苯胺/聚氨酯涂层的电磁屏蔽性能为32.2dB,优于含量为45%的机械搅拌法制备的聚苯胺粉体,这可能是由于线性结构的导电聚苯胺在基体中能够较容易形成三维导电网络结构所致。  相似文献   

17.
In present paper, polynailine (PANI)/CuCl nanocomposites were prepared by UV rays irradiation method. In this method, photons in the UV rays and Cu2+ ions replaced conventional oxidant such as ammonium persulfate (APS) to promote polymerization of aniline monomer. The PANI/CuCl nanocomposites were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscope (HRTEM), and electron diffraction (ED). The results indicated that aniline could polymerize to PANI by UV rays irradiation. Meanwhile, the results of HRTEM and ED confirmed that the CuCl dispersed into PANI was single crystal with cubic crystal structure. A potential formation mechanism of PANI/CuCl nanocomposites was investigated and suggested.  相似文献   

18.
Prussian blue nanotubes were fabricated by using a sequential deposition technique inside the 60-nm well-ordered pores of anodic alumina. By varying the deposition parameters and the dimensions of the template, we could tailor the length and the outer as well as the inner diameter of the tubes. The nanotubes were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD).  相似文献   

19.
In the modern pace of the world, food safety is a major concern. In this work, a simple chemiresistive type gas sensor was fabricated to detect Escherichia Coli (E. coli) bacteria. Polyaniline (PANI) films were deposited on the indium tin oxide substrate by an electrochemical deposition method. TiO2 nanoparticles were synthesised by facile hydrothermal method. PANI films were modified using hydrothermally prepared TiO2 nanoparticles by a spin coating method. X‐ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) and ultraviolet visible spectrophotometer techniques were used to characterise the PANI/TiO2 nanocomposites. The peaks obtained in the XRD pattern confirmed the anatase phase of TiO2 nanoparticles. FESEM analysis showed the nanofibrous structure of the nanocomposite. The FTIR characteristic peaks confirmed the formation of the nanocomposite. The electrical resistance of the sensors was evaluated as a function of the bacterial concentration. The PT2 (TiO2 coated 5 times on PANI) in comparison with PT1 (TiO2 coated 3 times on PANI) exhibited good sensitivity to the gas molecules at room temperature. The p‐n junction at PANI/TiO2 interface improved the physical adsorption of gas molecules. Since no specific antibodies or receptors are used, the sensor has the potential for adaptation to real‐life applications. Thus low cost, real‐time, portable, reusable and sensitive bacteria sensors were fabricated and tested.Inspec keywords: conducting polymers, nanoparticles, nanocomposites, visible spectra, ultraviolet spectra, microorganisms, nanosensors, adsorption, gas sensors, nanofabrication, nanofibres, X‐ray diffraction, titanium compounds, spin coating, field emission scanning electron microscopy, Fourier transform infrared spectra, polymer films, electrodeposition, electrical resistivity, wide band gap semiconductors, biological techniques, nanobiotechnologyOther keywords: simple chemiresistive type gas sensor, polyaniline films, indium tin oxide substrate, electrochemical deposition method, TiO2 nanoparticles, facile hydrothermal method, PANI films, spin coating method, gas molecules, portable bacteria sensors, reusable bacteria sensors, sensitive bacteria sensors, PANI‐TiO2 nanocomposite‐based chemiresistive gas sensor, Escherichia Coli bacteria detection, X‐ray diffraction, XRD, field emission scanning electron microscopy, FESEM, Fourier transform infrared spectra, FTIR spectra, ultraviolet‐visible spectra, anatase phase, nanofibrous structure, electrical resistance, bacterial concentration, p‐n junction, physical adsorption, temperature 293.0 K to 298.0 K, TiO2 , ITO  相似文献   

20.
In this paper, we explore the use of two organic materials that have been touted for use as photovoltaic (PV) materials: inherently conducting polymers (ICPs) and carbon nanotubes (CNTs). Due to these materials' attractive features, such as environmental stability and tunable electrical properties, our focus here is to evaluate the use of polyaniline (PANI) and single wall carbon nanotube (SWNT) films in heterojunction diode devices. The devices are characterized by electron microscopy (film morphology), current-voltage characteristics (photovoltaic behavior), and UV/visible/NIR spectroscopy (light absorption). We have found that both PANI and SWNT can be utilized as photovoltaic materials in a simple bilayer configuration with n-type Silicon: n-Si/PANI and n-Si/SWNT. It was our aim to determine how photovoltaic performance was affected utilizing both PANI and SWNT layers in multilayer devices: n-Si/PANI/SWNT and n-Si/SWNT/PANI. The short-circuit current density increased from 4.91 mA/cm(2) (n-Si/PANI) to 12.41 mA/cm(2) (n-Si/PANI/SWNT), while an increase in power conversion efficiency by ~91% was also observed. In the case of n-Si/SWNT/PANI and its corresponding device control (n-Si/SWNT), the short-circuit current density was decreased by an order of magnitude. The characteristics of the device were affected by the architecture and the findings have been attributed to the more effective transport of holes from the PANI to SWNT and less effective transport of holes from PANI to SWNT in the respective multilayer devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号