首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为提高碳纤维/环氧树脂复合材料的界面粘结性能, 采用γ射线共辐照接枝方法对碳纤维表面改性, 利用X光电子能谱仪(XPS)、 扫描电子显微镜(SEM)、 电子万能材料试验机, 研究了在缩乙二醇丙酮溶液和环氧氯丙烷丙酮溶液中经200 kGy剂量的γ射线辐照接枝后, 碳纤维的表面化学元素及官能团组成、 表面形貌、 复合材料剪切断面形貌及其层间剪切强度(ILSS)的变化。研究表明, 缩乙二醇类接枝液的接枝效果较理想, 碳纤维接枝率达7%; 辐照处理碳纤维表面O/C比值和含氧官能团含量增加, 以此制备的碳纤维/环氧复合材料的ILSS提高, 最大提高率达31.2%; 同时还发现辐照接枝后的碳纤维表面粗糙度增大。  相似文献   

2.
李琪  郭丽  李香兰 《功能材料》2023,(2):2231-2236
选择以T700碳纤维为增强相,将碳纤维经浓HNO3浸渍处理0,40,80,120和160 min后掺入到环氧树脂中,制备了碳纤维增强环氧树脂复合材料。分析了浸渍时间对复合材料微观形貌、力学性能和热稳定性的影响。结果表明,经浓HNO3浸渍的碳纤维表面粗糙度增大,沟槽数量和深度增加,碳纤维和环氧树脂的结合强度增大;随碳纤维浸渍时间的增大,复合材料的界面剪切强度、层间剪切强度、弯曲强度和弯曲模量均先增大后减小,当浸渍时间为120 min时,复合材料的界面剪切强度和层间剪切强度均达到了最大值,分别为80.2和90.3 MPa,其弯曲强度和弯曲模量也达到了最大值,分别为902.6 MPa和79.3 GPa,且应力-应变最高点增大,弯曲性能提高;在800℃下浓HNO3浸渍处理120 min的复合材料的残炭率最大为58.2%,热稳定性最佳。  相似文献   

3.
对60Coγ射线辐照处理的PAN 基碳纤维的力学性能、表面形貌及表面结构的变化和其与环氧树脂复合后层间剪切强度进行了初步的研究。60Coγ射线在1×102~ 1×103Gy 辐照剂量时, 使PAN 基中强碳纤维本身的力学性能显著提高; 使碳纤维表面的含氧官能团浓度和石墨化程度得以提高; 由此制备的碳纤维环氧复合材料的层间剪切强度SIL SS提高了31% 左右。而在辐照剂量≥1×104Gy 时, 由于辐照损伤及热效应, 使碳纤维的力学性能下降, 增加了表面的炭化及其撕裂程度,从而减小了碳纤维环氧复合材料的层间剪切强度SIL SS。  相似文献   

4.
碳纤维/有机硅改性环氧树脂复合材料性能研究   总被引:6,自引:2,他引:4  
介绍了一种碳纤维/有机硅改性环氧树脂复合材料的性能研究情况.对该复合材料的力学性能、热常数和烧蚀性能进行了初步测试.结果表明,其拉伸强度达到558MPa,拉伸模量达到44.0GPa,层间剪切强度为16.6MPa,导热系数不超过0.3 W/(m*K),氧-乙炔烧蚀的线烧蚀率为0.049mm/s,质量烧蚀率为0.0595g/s.通过与常用的碳/酚醛材料比较,碳纤维/有机硅改性环氧树脂复合材料的性能较优.  相似文献   

5.
使用自行合成的环氧改性水性聚氨酯(EWPU)上浆剂对碳纤维进行表面处理,主要研究了EWPU上浆剂对碳纤维表面及碳纤维/氰酸酯树脂复合材料界面性能的影响。采用扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)和静态接触角等表征方法对比研究了二次上浆处理前碳纤维(CF)和处理后碳纤维(MCF)的表面形貌、表面化学元素组成和浸润性的变化,并通过单纤维破碎实验和短梁剪切法,研究了EWPU上浆剂对碳纤维/氰酸酯树脂复合材料界面力学性能的影响。结果表明,经EWPU上浆处理后碳纤维表面O/C值增加了39.13%,表面活性官能团的含量增加了14.97%,碳纤维与树脂的初始和稳态接触角分别减小了19.41%和20.59%,碳纤维/氰酸酯树脂复合材料的单丝界面剪切强度和层间剪切强度分别增加了13.42%和14.29%。  相似文献   

6.
碳纤维γ射线辐照处理对其复合材料界面性能的影响   总被引:2,自引:0,他引:2  
采用γ射线辐照方法对碳纤维(CF)进行改性,研究了辐照对CF增强复合材料层间剪切强度(ILSS)、CF复丝拉伸强度的影响,并使用X射线光电子能谱(XPS)、扭辫分析、微脱粘测试等分析方法,对CF的表面化学组成和复合材料界面粘合强度进行了表征。结果表明,辐照使CF表面与环氧涂层发生了化学反应,复合材料界面粘合强度提高,ILSS增大,CF本体拉伸强度未发生变化。  相似文献   

7.
为探究热塑性酚酞基聚醚酮(Polyaryletherketone with Cardo,PEK-C)树脂薄膜及膜厚对层间增韧碳纤维/环氧树脂复合材料力学性能的影响,利用浸渍提拉法制备了三种不同厚度(分别约为1 μm、10 μm、30 μm)的PEK-C膜,通过热压成型制备了层间增韧碳纤维/环氧树脂复合材料层合板,对其进行了Ⅰ型层间断裂韧性、冲击后压缩强度、层间剪切及弯曲性能测试,并利用SEM观察微观形貌及AFM扫描微观相图。结果表明:不同PEK-C膜厚增韧碳纤维/环氧树脂复合材料的Ⅰ型层间断裂韧性、冲击后压缩强度及层间剪切强度有不同程度提高,Ⅰ型层间断裂韧性及层间剪切强度以膜厚为10 μm最佳,分别增大了157.17%和17.57%,冲击后压缩强度以膜厚为30 μm最佳,达到了186.67 MPa,这是由于PEK-C与环氧树脂在热压固化过程中形成了双相结构,改善了材料韧性;但弯曲性能持续下降,强度及模量由未增韧的1 551 MPa、106 GPa分别降至30 μm时的965 MPa、79 GPa,这是由于PEK-C树脂扩散进入环氧树脂中,降低了纤维体积分数及材料刚度。   相似文献   

8.
以2D碳纤维预制体为增强体, 采用电耦合和等温化学气相渗联合工艺制备C/C复合材料, 研究不同预制体结构对C/C复合材料及其螺栓力学性能的影响。结果表明, 不同预制体结构增强的C/C复合材料表现出不同的力学行为。对于针刺结构, 随着针刺密度由35 pin/cm 2降至25 pin/cm 2, C/C复合材料的拉伸、弯曲强度分别由60.1、119.9 MPa增大至69.5、176.8 MPa; 随着碳纱丝束由12 K变为3 K, C/C复合材料的拉伸、弯曲强度分别由69.5、176.8 MPa增大至105.5、184.4 MPa。对于12 K双向缝合结构, C/C复合材料的拉伸、弯曲强度分别为68.1、123.7 MPa。不同碳纤维预制体结构增强的C/C复合材料力学性能的差异主要取决于长纤维的完整性、大孔的分布和数量等因素。C/C复合材料的螺栓性能由于体材料性能和加工过程中缺陷的影响, 其拉伸强度略低于其体材料, 并表现出更为明显的脆性断裂模式。  相似文献   

9.
为提高碳纤维/环氧树脂复合材料的界面粘结性能,采用7射线共辐照接枝方法对碳纤维表面改性,利用X光电子能谱仪(XPS)、扫描电子显微镜(SEM)、电子万能材料试验机,研究了在缩乙二醇丙酮溶液和环氧氯丙烷丙酮溶液中经200kGy剂量的Υ射线辐照接枝后,碳纤维的表面化学元素及官能团组成、表面形貌、复合材料剪切断面形貌及其层间剪切强度(ILSS)的变化。研究表明,缩乙二醇类接枝液的接枝效果较理想,碳纤维接枝率达7%;辐照处理碳纤维表面O/C比值和含氧官能团含量增加,以此制备的碳纤维/环氧复合材料的ILSS提高,最大提高率达31.2%;同时还发现辐照接枝后的碳纤维表面粗糙度增大。  相似文献   

10.
为制备低电阻率的尼龙66基复合材料,以碳纤维和镍粉(Ni)填充尼龙66制备碳纤维-Ni/尼龙66高导电复合材料。研究填料表面改性和含量对碳纤维-Ni/尼龙66复合材料导电性能和力学性能的影响。结果表明:KH550改性碳纤维和Ni有助于降低碳纤维-Ni/尼龙66复合材料的电阻率。碳纤维-Ni/尼龙66复合材料的电阻率随着碳纤维和Ni含量的增加而减小,且碳纤维和Ni填充尼龙66的导电逾渗阈值均为20wt%,此时制备的碳纤维-Ni/尼龙66复合材料的电阻率为455Ω·cm,熔融温度为202.2℃。碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度随着碳纤维或Ni含量的增加而先增大后减小。当Ni含量为20wt%时,碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度在碳纤维含量分别为20wt%和10wt%时达到最大值,分别为98MPa和70 MPa;当碳纤维含量为20wt%时,碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度则在Ni含量为30wt%和20wt%时达到最大值,分别为120 MPa和67 MPa。  相似文献   

11.
The purpose of this work is to compare tensile, compressive and interlaminar shear properties of different carbon reinforcement/polyamide composites obtained by interfacial polymerization and hot compression molding techniques. Two types of composite matrices were studied: polyamide 6 and polyamide 6/6, both reinforced by fabric and unidirectional carbon fibers. The effects of the fiber volume fraction and the matrix on mechanical properties were analyzed through tensile, interlaminar shear and compressive tests. In general, the results have shown a slight increase of the composite elastic modulus, tensile and compressive strength with the increase of carbon fiber content. The microscopic damage development within selected composites during the loading has been observed through optical and scanning electron microscope techniques and has shown that shear failure at the fiber/matrix interface has been mostly responsible for damage development, initiated at relatively low stress.  相似文献   

12.
为了研究连续单向纤维的层间混杂方式对复合材料力学性能及破坏方式的影响,采用碳纤维-玻璃纤维体积比为1∶1,以拉-挤成型法制备了具有不同层间混杂结构的连续单向纤维增强环氧树脂基复合材料,并研究了不同层间混杂结构的连续单向碳纤维-玻璃纤维增强环氧树脂基复合材料的力学性能及破坏形式。结果表明:具有层间混杂结构的复合材料抗拉强度处于纯碳纤维/环氧树脂复合材料和纯玻璃纤维/环氧树脂复合材料之间,复合材料的拉伸断裂方式为劈裂;具有层间混杂结构的复合材料的层间剪切强度均优于纯碳纤维/环氧树脂复合材料和纯玻璃纤维/环氧树脂复合材料,复合材料的剪切断裂方式为层间断裂。  相似文献   

13.
采用前原位聚合的热塑性聚酰亚胺(PI)改性4,4′-二氨基二苯甲烷双马来酰亚胺(BDM)/4,4′-邻二烯丙基双酚A(DABPA)树脂体系,制备了一种耐高温的改性双马来酰亚胺(BDPI)树脂,研究了BDPI树脂的微观形貌和耐热性能;通过前原位自增强技术制备了T800H碳纤维/BDPI预浸料,通过SEM研究了T800H/BDPI预浸料表面形貌,评价了T800H/BDPI复合材料高低温力学性能和断面微观形貌。结果表明:BDPI树脂满足预浸料加工工艺要求,BDM微米颗粒均匀铺覆于T800H/BDPI预浸料表面,粒径分布为30~70 μm,BDPI树脂固化物的玻璃化转变温度(Tg)为367℃,5%热失重温度(Td5)为452℃;T800H/BDPI单向复合材料0°拉伸强度、0°拉伸模量和层间剪切强度分别为2 440 MPa、148 GPa和107 MPa,280℃其力学性能保持率分别为66.4%、87.2%和44.1%。   相似文献   

14.
以高强高模聚酰亚胺(PI)纤维为增强体,以航空级环氧树脂(EP)为基体,通过热熔法制备预浸料并采用热压罐成型技术制备了PI/EP复合材料层合板,对其力学性能和破坏形貌进行了分析。结果表明:高强高模PI纤维与EP具有良好的界面结合力,PI/EP复合材料的层间剪切强度为65.2 MPa,面内剪切强度为68.6 MPa;良好的界面结合状态能充分发挥PI纤维优异的力学性能,PI/EP复合材料的纵向拉伸强度达1 835 MPa,弯曲强度为834 MPa;PI/EP复合材料纵向拉伸破坏模式为散丝爆炸破坏,同时由于高强高模PI纤维还具有优异的韧性和较高的断裂伸长率,PI/EP复合材料从受力到失效断裂的时间较长;PI/EP复合材料纵向压缩破坏模式为45°折曲带破坏。高强高模PI/EP复合材料为航空航天先进复合材料增加了一个全新的选材方案。   相似文献   

15.
采用环状对苯二甲酸丁二醇酯(CBT)原位聚合制备了连续玻璃纤维(GF)增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。考察了聚合反应中催化剂用量对PCBT结晶度以及GF/PCBT复合材料力学性能的影响。当催化剂用量为0.5%(质量分数)时, PCBT的结晶度为53%, GF/PCBT的力学性能达到最佳, 拉伸强度为522 MPa, 拉伸模量为27 GPa, 弯曲强度为481 MPa, 弯曲模量为24.8 GPa, 层间剪切强度(ILSS)为43 MPa。SEM观察表明, 发现催化剂用量为0.5%时, 树脂与纤维的结合性较好。进一步研究了淬火和退火后处理对复合材料力学性能的影响。发现复合材料退火处理后具有较好的力学性能, 其中拉伸强度为545 MPa, 弯曲强度为495 MPa。  相似文献   

16.
碳纳米管/碳纤维/环氧树脂复合材料研究   总被引:1,自引:0,他引:1  
制备了碳纳米管(CNTs)/碳纤维(CF)/环氧树脂(EP)三元复合材料。研究了CNTs含量对复合材料层间剪切强度、弯曲强度和弯曲模量的影响,并采用场发射扫描电镜分析了CNTs在基体树脂中的分散情况。结果表明:复合材料性能的变化源自于CNTs在基体树脂中的分散状态。当CNTs含量为0.2%(wt,下同)时,复合材料剪切强度和弯曲强度达到最大值,分别为99.2MPa和1811.4MPa,但其弯曲模量下降了8.7GPa。当CNTs添加量达到1%时,其弯曲模量达到135.9GPa,较未加入CNTs时提高了11.1%,层间剪切强度和弯曲强度分别降低了5.5MPa和359.5MPa。  相似文献   

17.
为改善石墨纤维和氰酸酯树脂间的界面性能,利用臭氧处理技术对石墨纤维进行表面处理,并采用AFM、XPS和IR对处理前后的石墨纤维表面形貌和组成进行了分析,研究了臭氧处理对石墨纤维/氰酸酯复合材料层间剪切强度和弯曲强度的影响.实验结果表明:臭氧处理提高了碳纤维表面活性,从而改善了石墨纤维/氰酸酯复合材料的界面粘结性能,进而改善了复合材料的界面和力学性能.  相似文献   

18.
以4,5-环氧己烷-1,2-二甲酸二缩水甘油酯(TDE-85)、苯基缩水甘油醚(PGE)、壬基酚(NP)作为改性剂改性双酚A氰酸酯(BCE)得到改性氰酸酯树脂(TPNCE),通过湿法缠绕制备预浸料,并采用热压罐成型工艺制备S30M型高强高模聚酰亚胺纤维/TPNCE(PI/TPNCE)复合材料,对TPNCE树脂及PI/TPNCE复合材料的介电、力学等性能进行了分析。结果表明,TPNCE树脂冲击强度达到14.2 kJ/m2,比BCE提高近一倍,固化温度下降了约43℃,与PI纤维界面结合较好,且保持较低的介电常数和介电损耗;PI/TPNCE复合材料0°拉伸强度达到1 485 MPa,弯曲强度达到758 MPa,压缩强度达到322 MPa,7~18 GHz范围内介电常数保持在3.15左右,介电损耗因子在0.005~0.0075之间,玻璃化转变温度为197℃,密度为1.28 g/cm3。本研究实现了高强高模PI纤维与氰酸酯树脂复合的重要突破,为轻质高强结构-功能一体化复合材料的设计和选材提供了新思路。   相似文献   

19.
自行开发了一种高刚度环氧树脂(5182树脂),研究了5182树脂的增刚机制、耐热性能和力学性能。结果表明,原位生成的酰亚胺刚性链段及增加的多交联位点提高了5182树脂交联网络的刚性,其玻璃化转变温度达228℃,拉伸模量达到4 375 MPa。采用高刚度5182树脂制备了国产BHM3和东丽M40J高模碳纤维增强高刚度环氧树脂复合材料,考察了高模碳纤维/高刚度环氧树脂单丝复合材料的界面黏结性能和断面微观形貌,并评价了高模碳纤维/高刚度环氧树脂单向复合材料的宏观力学性能。结果表明,由于树脂模量的提高及界面破坏区域由碳纤维表面转移到环氧树脂区,高模碳纤维/高刚度环氧树脂复合材料的界面剪切强度最高达106.8 MPa,宏观力学性能优异,尤其弯曲性能和层间剪切强度大幅提高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号