首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《功能材料》2021,52(1)
以挤压态AZ31镁合金为研究对象,通过修正的VPSC模型,构建耦合滑移和孪生的晶体塑性力学模型,从微观变形机制的角度研究镁合金在不同加载方式下的塑性变形行为。通过EBSD等实验结果与模拟结果对比发现,轴向压缩过程中,协调变形的主要机制为拉伸孪生和基面滑移,拉伸孪晶的大量开启导致晶粒c-轴发生约90°的旋转,使得{0002}基面织构的极密度向挤压(ED)的正反方向偏移,{11-20}和{10-10}棱柱面织构的极密度逐渐向垂直于挤压方向的TD方向偏移;轴向拉伸过程中,变形初期的变形机制以基面滑移为主,棱柱面滑移为辅,随着变形的增加,主导变形机制变为棱柱面滑移;且无论变形百分比多少,{0002}和{11-20}极图基本没有发生变化,只是织构强度有所增加,而棱柱面滑移的大量开启,使得{10-10}棱柱面织构的极密度向ED方向偏移。  相似文献   

2.
本文研究了AZ31镁合金挤压板材热处理后不同晶粒尺寸下各角度的拉伸性能与变形行为,通过分析拉伸曲线和变形后的位错类型来确定不同角度下的拉伸变形机制。结果发现:沿板材法向0°,22.5°,45°,67.5°,90°拉伸后的屈服强度与晶粒尺寸符合Hall-Petch(H-P)关系,但H-P参数值各不相同,0°具有最高的σ_0和最低的K_y,其变形机制由拉伸孪晶为主导与棱柱面a滑移共同作用;45°拉伸时具有最低的σ_0和最高的K_y,变形机制为基面a滑移主导;90°下的H-P参数值与0°相接近,c位错及a+c位错开始出现,棱柱面滑移与拉伸孪晶共同主导变形机制,孪晶可以协调变形改变晶粒取向和促进非基面滑移的产生。  相似文献   

3.
研究了预变形及退火处理对挤压态AZ31镁合金压缩力学性能的影响,结果表明:沿挤压方向进行应变量为0.086的预压缩变形,随后在300℃下进行0.5小时退火处理,可显著提高镁合金的塑性,其压缩率比一次压缩至破碎的压缩率提高约137%。织构及金相分析结果表明:预变形使(0002)基面发生了近90°的转动,由平行挤压方向变为与挤压方向垂直,且产生了大量孪晶组织。退火处理不改变(0002)基面织构,但消除了孪晶且出现了细小再结晶晶粒,因而提高了镁合金的塑性。  相似文献   

4.
AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究   总被引:1,自引:0,他引:1  
利用电子背散射衍射(EBSD)技术,原位跟踪AZ31镁合金轧制板材室温下沿轧向拉伸时的晶粒取向变化。对变形过程的滑移系和孪晶启动机进行分析。结果表明:变形过程主要由〈a〉基面和柱面滑移系开动而实现,晶粒取向无明显变化,大量〈a〉位错滑移的产生,使得变形后小角度晶界增加明显。晶粒中拉伸孪晶是试样在拉伸变形过程中产生的,而非在试样拉伸后的卸载过程中产生。  相似文献   

5.
车波  卢立伟  吴木义  康伟  唐伦圆  房大庆 《材料导报》2021,35(21):21249-21258
与铸造镁合金相比,变形镁合金可获得更高的强度、更好的延展性以及更多样化的力学性能,从而满足多样化镁合金结构件的应用需求.但由于变形镁合金绝对强度低、塑性变形能力差,其应用范围受到了极大的限制.近期研究发现,对变形镁合金进行预时效处理能够显著提高合金的综合力学性能,因此总结和归纳预时效对变形镁合金的影响具有重要的理论参考价值和实践指导意义.预时效是在塑性加工前进行时效处理的一种时效方法,预时效处理可通过欠时效、峰值时效和过时效等工艺调控析出相的大小、形状、分布和位向,析出相在后续的加工变形过程中具有改善材料组织与性能的重要作用.预时效提供的析出相,在后续塑性加工变形过程中为动态再结晶提供形核核心,促进动态再结晶,细化晶粒,激活非基面滑移,弱化基面织构,且晶界析出相可显著抑制晶粒长大,有效阻碍位错运动,也可使位错累积增多,小角度晶界增多.此外,增加析出相含量能减小晶粒尺寸,抑制{1012}拉伸孪晶的形核和长大,增加{1011}压缩孪晶和{1011}-{1012}双孪晶含量,这些孪晶增加了动态再结晶的形核核心,改变了晶粒取向,进而大幅提高了合金的强度、屈服应力和峰值应力,同时也保证了合金的延展性,极大地改善了镁合金的综合力学性能.本文针对Mg-Al系、Mg-Zn系、Mg-Sn系和Mg-RE系等四系合金,总结分析了预时效对变形镁合金组织与性能的影响,着重从压缩、拉伸、挤压和轧制等变形工艺角度进行综述,为制备综合力学性能优良的镁合金提供参考.此外,本文指出了预时效变形镁合金在未来的发展动态和研究重点.  相似文献   

6.
通过分析组织和织构研究了Ti75合金板材拉伸性能和冲击韧性的各向异性。结果表明,Ti75板材横向(transverse direction,TD)的抗拉强度、屈服强度、伸长率和冲击韧性均优于轧向(rolling direction,RD)的对应指标。由于板材横向的屈服强度远大于轧向的屈服强度,使得板材横向屈强比(Rp0.2/Rm)远大于轧向的屈强比。Ti75板材为B/T(basal/transverse)织构类型,主要织构组分为{0002}1120(B织构)、{1013}1120(B31织构)和{1120}1010(T织构),织构造成横向和轧向拉伸时棱柱面滑移的Schmid因子不同。Ti75板材横轧向屈服强度的差异主要与织构引起晶粒滑移系启动的难易不同有关,抗拉强度主要取决于元素的强化作用,主要影响因素的不同造成了板材不同方向屈强比存在较大的差异。  相似文献   

7.
采用一次挤压变形、二次挤压变形以及一次挤压后再进行锻造的三种加工工艺对AZ61镁合金进行塑性变形,研究不同的加工工艺对镁合金力学性能及拉压不对称性的影响。结果表明:挤压变形可以细化AZ61镁合金的晶粒,而在挤压后进行锻造变形,会使得其晶粒长大粗化。二次挤压后,由于强化了{0002}基面织构,AZ61镁合金的拉伸屈服强度增加,压缩屈服强度下降,使得拉压不对称性加大。而一次挤压后锻造,在挤压基面织构状态得到改变,且由于晶粒粗大,从而总体上使得AZ61镁合金的拉伸屈服强度下降,而压缩屈服强度几乎保持不变,AZ61的拉压不对称性得到改善。  相似文献   

8.
CVD自支撑金刚石薄膜中的宏观织构与微观孪晶   总被引:5,自引:0,他引:5  
采用背散射电子取向成像、扫描电镜、X射线衍射等手段研究了CVD自支撑金刚石膜的宏观织构、微观组织及晶粒取向的演化过程.薄膜制备时的气氛纯度较低,这是引起本文金刚石膜中发现大量孪晶的一个重要原因.杂质原子会降低金刚石的层错能,从而降低孪晶界的形成障碍,促进孪晶生成.频繁的孪晶导致{100}织构转向{122}织构,并弱化薄膜织构,使性能趋向各向同性.{110}取向的晶粒孪晶后仍具有{110}取向,因而在多重孪晶出现时仍可保持一定的稳定性.  相似文献   

9.
直接时效热连轧GH4169合金的力学性能与变形特征   总被引:1,自引:1,他引:0  
通过对热连轧GH4169合金进行直接时效处理、组织形貌观察和力学性能测试,研究了直接时效热连轧合金的力学性能和变形特征.结果表明,直接时效热连轧GH4169合金组织由细小晶粒组成,具有明显的形变孪晶特征,且有细小#$和#%相在合金中弥散析出,可提高合金强度.在实验温度范围内,合金的抗拉和屈服强度随着温度的升高而逐渐下降;在拉伸过程中,直接时效热连轧GH4169合金的变形特征是孪晶变形和位错的双取向滑移;在拉伸后期,大量微孔沿晶界或晶内形成并聚合形成裂纹,致使合金发生韧性断裂.  相似文献   

10.
采用大变形技术"挤压-剪切"(Extrusion-shear,ES)工艺挤压AZ31镁合金并研究其组织和织构演变.结果表明:经ES工艺挤压后能得到细小均匀的再结晶晶粒;其宏观组织内存在多种类型的织构,削弱了基面织构的主导地位;由极图可知{0002}基面织构强度下降,ES工艺的再结晶机制是连续动态再结晶.  相似文献   

11.
Abstract

Compressive deformation along the rolling direction (RD) of a hot rolled Mg–3Al–1Zn alloy is applied to investigate the texture evolution and the recompressive yield strength (RYST) along the transverse direction (TD). Preferential orientation of the basal and prismatic planes is generated by the plastic deformation. Precompression along RD results in one plane of {10–10} aligned nearly perpendicular to the normal direction to the rolling plane. As the compressive strain along RD increases, the RYST shows an earlier raised and later decreased trend. The modified twinning mechanism is investigated using X-ray diffraction and electron backscattered diffraction observations. The results reveal that {10–12} twinning in the matrix dominates the recompression along TD, while the formation of {10–12}–{10–12} twins becomes comparatively easier to occur in the previous {10–12} twins for large precompressed samples.  相似文献   

12.
采用异步轧制、多向异步轧制、高温异步轧制、高温多向异步轧制四种不同的方式轧制双相镁锂合金板材。通过光学显微镜、MTS E43拉伸试验机和X射线衍射仪观察不同工艺轧制后合金的显微组织、力学性能以及织构特征,综合分析温度和轧制方向条件耦合对镁锂合金组织和力学性能的影响。结果表明:四种轧制工艺可以使α-Mg相沿轧制方向伸长,同时沿着轧制方向法向细化。高温多向异步轧制后α相厚度最低为2.6μm。多向异步轧制后材料的屈服强度、抗拉强度、伸长率分别为149,167 MPa,14.5%,其综合力学性能最优。多向轧制使双峰织构沿ND方向45°偏转,高温轧制使双峰织构由基极向RD方向偏转的角度降低。轧制后样品R-cube织构组分最强,高温多向异步轧制使β-Li相轧制织构转变成为{001}〈100〉织构,有利于{011}〈111〉滑移系发生多滑移。  相似文献   

13.
Anisotropy of mechanical property is an important feature influencing the service performance of tita-nium(Ti)alloy tube component.In this work,it is found that the hot flow formed Ti alloy tube exhibits higher yield strength along circumferential direction(CD),and larger elongation along rolling direction(RD),presenting significant anisotropy.Subsequently,the quantitative characteristics and underlying mechanism of the property anisotropy were revealed by analyzing the slip,damage and fracture behav-ior under the combined effects of the spun{0002}basal texture and fibrous microstructure for different loading directions.The results showed that the prismatic slip in primary α grain is the dominant defor-mation mechanism for both loading directions at the yielding stage.The prismatic slip is harder under CD loading,which makes CD loading present higher yield strength than RD loading.Additionally,the yield anisotropy can be quantified through the inverse ratio of the averaged Schmid Factor of the activated prismatic slip under different loading directions.As for the plasticity anisotropy,the harder and slower slip development under CD loading causes that the CD loading presents larger external force and normal stress on slip plane,thus leading to more significant cleavage fracture than RD loading.Moreover,the micro-crack path under RD loading is more tortuous than CD loading because the fibrous microstructure is elongated along RD,which may suppress the macro fracture under RD loading.These results suggest that weakening the texture and fibrous morphology of microstructure is critical to reduce the differences in slip,damage and fracture behavior along different directions,alleviate the property anisotropy and optimize the service performance of Ti alloy tube formed by hot flow forming.  相似文献   

14.
AZ31 magnesium alloy sheets were processed by normal rolling (NR), one-pass equal channel angular rolling (1P-ECAR), and cross equal channel angular rolling (C-ECAR) at 400 °C on a die with 105 ° channel angle. The microstructure, texture, and tensile properties of sheets were measured. The results show that ECAR processing can weaken the basal plane texture, thus obviously improve the mechanical properties. The yield ratio σsb decreases and strain hardening exponent n increases along rolling direction (RD) during ECAR, which means that the uniform plastic formability is enhanced. After C-ECAR, the mechanical properties along both the RD and transverse direction (TD) are improved. Different twinning types, fine contraction twinning in the NRed sheets and coarse extension twinning in the ECARed sheets, were observed. The easier activation of twinning and basal 〈a〉 slip leads to the lower yield strength of the ECARed sheets. Dynamic recrystallization (DRX) during the rolling process has great effect on the microstructure of the as-deformed and annealed sheets. The annealed C-ECARed sheets have significant finer and homogenous grains than the annealed NRed sheets, which is attributed to the rarely DRX process during ECAR. The average grain sizes of the annealed C-ECARed samples and NRed samples are 14 and 24 μm, respectively.  相似文献   

15.
在AZ31B镁合金板材的板面内沿不同方向进行单向拉伸和压缩试验,研究挤压板材的力学性能。结果表明,变形AZ31B镁合金板材具有显著的各向异性和拉压非对称性。在板面内,沿挤压方向拉伸时的屈服应力明显地比沿同方向压缩和沿其他方向拉伸或压缩时的高(约2倍);沿45°斜向拉伸的屈服应力和抗拉强度较低,而延伸率最高;这种非对称性主要表现为屈服非对称和塑性流动非对称,即拉压的屈服应力不相等和拉压应力-应变曲线形状不同,压缩曲线表现出特殊的"S"型。基于晶体塑性理论,讨论了引起变形镁合金的各向异性和拉压非对称性力学性能的变形机理。  相似文献   

16.
The dynamic deformation behaviors and resultant microstructural variations during high-speed rolling(HSR) of a Mg alloy with a non-basal texture are investigated. To this end, AZ31 alloy samples in which the basal poles of most grains are predominantly aligned parallel to the transverse direction(TD) are subjected to hot rolling with different reductions at a rolling speed of 470 m/min. The initial grains with a TD texture are favorable for {10–12} twinning under compression along the normal direction(ND); as a result, {10–12} twins are extensively formed in the material during HSR, and this consequently results in a drastic evolution of texture from the TD texture to the ND texture and a reduction in the grain size. After the initial grains are completely twinned by the {10–12} twinning mechanism, {10–11} contraction twins and {10–11}-{10–12} double twins are formed in the {10–12} twinned grains by further deformation.Since the contraction twins and double twins have crystallographic orientations that are favorable for basal slip during HSR, dislocations easily accumulate in these twins and fine recrystallized grains nucleate in the twins to reduce the increased internal strain energy. Until a rolling reduction of 20%, {10–12}twinning is the main mechanism governing the microstructural change during HSR, and subsequently,the microstructural evolution is dominated by the formation of contraction twins and double twins and the dynamic recrystallization in these twins. With an increase in the rolling reduction, the average grain size and internal strain energy of the high-speed-rolled(HSRed) samples decrease and the basal texture evolves from the TD texture to the ND texture more effectively. As a result, the 80% HSRed sample, which is subjected to a large strain at a high strain rate in a single rolling pass, exhibits a fully recrystallized microstructure consisting of equiaxed fine grains and has an ND basal texture without a TD texture component.  相似文献   

17.
Abstract

Effect of texture anisotropy of Mg alloy AZ31, processed by multidirectional forging, on low temperature superplasticity was studied in tension at 423 and 473 K. Multidirectional forging was carried out up to large cumulative strain of 4·8 with changing loading direction from pass to pass under decreasing temperature conditions. When the basal plane in initial texture is inclined at ~45° against tensile direction, rotation of basal plane towards tensile direction takes place accompanying with basal slip and grain coarsening or refinement, leading to the highest elongation to failure of 320%. This suggests that superplastic deformation can be controlled by grain boundary sliding accompanied with grain size changes taking place due to continuous dynamic recrystallisation.  相似文献   

18.
采用累积叠轧技术在300℃下制备了纯Mg/ZK60 Mg合金多层复合板材。经过初始复合后,Mg层和ZK60层晶粒明显细化,随着循环次数的增加,Mg/ZK60复合板材两组元晶粒细化并不明显。两种组元的层厚随着循环次数的上升而逐渐降低,两次循环后Mg/ZK60复合板材出现波浪状组织。累积叠轧后,Mg/ZK60复合板材中Mg层和ZK60层呈现典型的轧制织构类型,{0001}基面均向轧制方向发生轻微偏转。Mg/ZK60复合板材的强度及延伸率均介于轧制态的ZK60板与Mg板之间,并随着循环次数的增加逐渐提高。Mg/ZK60复合板材室温阻尼性能和高温阻尼性能均介于纯Mg与ZK60之间,而高温下Mg/ZK60复合板材的高温阻尼则与ZK60板材变化趋势相类似。   相似文献   

19.
Three different mold structures were designed by changing the parameters of mold cavity to study the effect of local strains on the texture and mechanical properties of AZ31 magnesium alloy produced by continuous variable cross-section direct extrusion (CVCDE) with 2 interim dies. Microstructure and texture evolution of AZ31 magnesium alloy after CVCDE were studied by electron backscatter diffraction (EBSD). Mechanical properties were determined by uniaxial tensile tests along extrusion direction (ED) at room temperature. Due to the differences of local strains among the three schemes, the microstructure of Scheme 1 was the most uniform and the average grain size of Scheme 1 was the smallest. Meanwhile, tensile strength and elongation of Scheme 1 were the highest. Different textures had been formed in the three schemes. Lots of extension twins {10–12} (86°< 1–210 >) occurred in the products of the three schemes. The main deformation modes of Scheme 1 and Scheme 2 were slip and twinning. However, slip was dominant in Scheme 3. The deformation modes provided an essential basic for the design of CVCDE mold structure with more interim dies.  相似文献   

20.
Twinning and de-twinning are the salient deformation mechanisms in hexagonal close-packed(hcp)metals. The aim of this study was to examine and quantify the de-twinning process involving a reversible motion of twin boundaries in an extruded AM30 magnesium alloy after re-compression along the normal direction(ND) of pre-compressed samples along the extrusion direction(ED). {1012} extension twins were first introduced at a compressive strain of 3.7% along the ED. The subsequent compressive deformation along the ND induced a gradual shrinkage of twins with increasing cumulative true strain,and the complete de-twinning occurred at a strain of ~7.7%. The twin width decreased linearly with increasing true strain. Texture measurements verified the rotation of c-axes of hcp unit cells towards the anti-compression direction due to {1012} extension twinning after compression along the ED, and a gradual return of c-axes to the initial orientation due to twin shrinking or de-twinning during the following compression along the ND. The {1012} twinning corresponded to the formation of new texture components C{1210}<0001> and D{0110}<0001> and a decrease in the initial texture components A{0001}<2110> and B{0001}<1010>, while the twin shrinking or de-twinning was characterized by a gradual vanishing of components C{1210}<0001> and D{0110}<0001> and an increase in the components A{0001}<2110> and B{0001}<1010>.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号