首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
目的 解决TC21钛合金六角头螺栓冷镦成形困难的难题。方法 利用置氢处理改善TC21钛合金的冷镦成形性能,利用电子万能材料试验机对未置氢和置氢TC21钛合金六角头螺栓进行冷镦成形,利用金相显微镜、X射线衍射仪、透射电子显微镜和显微维氏硬度计等设备对未置氢和置氢TC21钛合金冷镦六角头螺栓的显微组织和显微维氏硬度进行分析。结果 在冷镦成形过程中,置氢TC21钛合金六角头螺栓未出现缺陷,而未置氢TC21钛合金六角头螺栓则出现了裂纹。未置氢和置氢TC21钛合金冷镦六角头螺栓的头部均呈现出“一字双岔状变形带”,在未置氢TC21钛合金冷镦六角头螺栓头部变形带的分岔处出现了裂纹。与未置氢TC21钛合金冷镦六角头螺栓相比,置氢TC21钛合金冷镦六角头螺栓的显微组织发生了显著变化。在置氢TC21钛合金冷镦六角头螺栓中,α相和β相的光学对比度与未置氢合金的相反,α相含量减少,β相含量增加,β相成为合金的主要相,并发现了较多的位错。置氢TC21钛合金冷镦六角头螺栓各区的显微维氏硬度均低于未置氢TC21钛合金冷镦六角头螺栓各区的显微维氏硬度。结论 置氢处理有利于TC21钛合金六角头螺栓的冷镦成形。  相似文献   

2.
采用宏观检验、化学成分分析、金相检验、力学性能试验、断口分析、有限元分析等方法对某风力发电机组主轴连接螺栓断裂原因进行了分析。结果表明:该主轴连接螺栓断裂模式为氢致脆性断裂;螺栓表面处理前的酸洗工艺控制不当造成大量氢渗入,是导致其氢致脆性断裂的主要原因。  相似文献   

3.
通过断口形貌观察、X射线能谱分析、金相检验和硬度检测等试验方法,对某燃油供油导管快卸卡箍螺栓的断裂原因进行了分析,并与螺栓冲击断口和氢致疲劳断口进行了比较分析。结果表明:该快卸卡箍螺栓断口特征与冲击断口和氢致疲劳断口明显不同,其断裂性质为应力腐蚀断裂,裂纹起源于螺栓光杆段的侧表面;螺栓表面加工粗糙且没有防护对裂纹的萌生有一定的影响。对螺栓表面进行防腐处理可有效避免该类故障的再次发生。  相似文献   

4.
某发动机缸盖螺栓在装配后发生断裂。通过宏观、微观检验以及化学成分分析、力学性能测试、氢脆试验等对断裂原因进行了分析。结果表明:缸盖螺栓发生了氢脆断裂。其原因是缸盖螺栓在表面磷化后的去氢处理不当,导致装配后缸盖螺栓在拉应力的作用下产生氢脆裂纹,并最终发生断裂。  相似文献   

5.
规格为M4×30 mm高强度钛合金螺栓在正常预紧装配后自行断裂。采用金相检验、扫描电镜断口分析、二次离子质谱分析和螺栓的受力分析等方法对螺栓断裂的原因进行了分析。结果表明,螺栓断裂的性质为低应力脆性断裂,断裂机理为氢致延迟断裂,导致螺栓氢致延迟断裂的原因主要与该批棒材原始氢含量过高有关。  相似文献   

6.
某风力发电公司的变桨轴承螺栓在使用半年后发生断裂。采用金相检验、化学成分分析、硬度测试及断口分析等方法对该螺栓断裂的原因进行了分析。结果表明:裂纹起源于螺帽与螺杆连接的R角处,该处为应力集中部位,在螺栓松动后,垫片在交变载荷的作用下不断撞击螺栓R角处并在螺杆表面造成损伤,当损伤达到一定程度后,再加上螺杆表面存在脱碳现象,造成表面裂纹的萌生,裂纹在交变载荷的作用下扩展,导致螺栓发生疲劳断裂。  相似文献   

7.
某车型装配牵引鞍座与瓦楞连接用螺栓在安装扭紧后的静置调试过程中发生断裂,通过断口分析、化学成分分析、氢含量分析、力学性能测试、金相检验等方法,对螺栓的断裂原因进行了分析。结果表明,螺栓断裂模式为氢致脆性断裂。建议螺栓在制造过程中及时除氢。  相似文献   

8.
通过宏观检验、化学成分分析、力学性能试验、金相检验及能谱分析等方法对10.9级高强螺栓断裂原因进行了分析。结果表明:在螺栓镦头成型工序中,头部R角部位产生折叠微裂纹,形成了早期裂纹源;在服役过程中,螺栓长期受交变工作应力作用,使得微裂纹进一步扩展,最终导致高周疲劳断裂。最后提出了相应的预防措施。  相似文献   

9.
双头螺栓失效分析   总被引:4,自引:3,他引:1  
与汽车电机装配在一起的双头螺栓在拧紧后不久便发生断裂。采用扫描电镜、化学分析、金相检验等方法对失效件进行了检测,同时又进行了氢脆试验验证。结果表明,螺栓在进行表面酸洗及电镀时,氢向金属内部扩散和富集,当氢浓度达到一定临界值后,促使氢致裂纹的产生和扩展。在外应力的作用下,即出现氢脆现象导致螺栓断裂。  相似文献   

10.
某铁路主桥钢桁梁杆间20MnTiB钢高强螺栓发生断裂。采用复检试验、化学成分分析、金相检验、硬度测试、力学性能测试和断口分析等方法,分析了螺栓断裂的原因。结果表明:螺栓的断裂形式为氢致断裂,断裂原因是螺栓中锰元素含量偏高,导致耐腐蚀性下降,长期在潮湿环境下服役,致使螺栓发生氢致断裂。  相似文献   

11.
某石化公司氢气压缩机缸盖螺栓发生断裂,采用宏、微观断口分析、化学成分分析、金相检验以及力学性能测试等试验手段分析了该氢气压缩机缸盖螺栓的断裂原因。结果表明:断裂起源于螺杆与螺栓头部连接螺纹末端的应力集中处,由于应力集中,加之螺栓强度等级偏低,使螺栓在长期工作过程中的往复交变应力和扭转应力共同作用下发生了低应力高周疲劳断裂。  相似文献   

12.
镀锌螺栓在组装后放置1~2d于根部或头部发生大量断裂,采用化学成分分析、金相检验、硬度检测及断口分析等方法对螺栓的断裂性质及断裂原因进行了分析。结果表明:螺栓断裂为典型的氢脆断裂;主要原因是螺栓在后期酸洗和电镀过程中除氢不彻底,吸入了大量的氢;次要原因是热处理工艺控制不当,使螺栓心度硬度偏高,增加了其对氢脆的敏感性;两者共同作用最终导致螺栓发生氢脆断裂。  相似文献   

13.
采用化学成分分析、室温力学性能测试以及金相检验对某电厂材料为35CrMo钢的循环水泵泵轴联轴器螺栓的断裂原因进行了分析。结果表明:由于该螺栓在热加工成型后未按要求进行调质处理,导致其硬度和强度偏低,加上螺栓头部形状不规则以及螺栓头部与螺杆连接部位没有过渡圆弧造成应力集中,使螺栓在循环水泵运行过程中泵轴轴系的周期性振动下发生疲劳断裂。  相似文献   

14.
针对装配现场发生的几起高强度螺栓断裂失效事故,采用金相分析、化学成分分析和力学性能测试等方法进行检测。分析结果认为螺栓失效的原因有:(1)螺纹成形时产生裂纹,螺栓因之而脆断;(2)杆部与头部交接处表面脱碳、使局部强度降低而断裂;(3)装配时扭矩过大,螺栓明显缩颈而断裂;(4)原材料中心存在裂纹。  相似文献   

15.
In order to protect bolts from corrosion, electroplating such as zinc plating is widely used. However, hydrogen can easily penetrate or diffuse into the vacancies and dislocations between the lattices of bolt steel during electroplating. As the diffused hydrogen defects inside the lattice are in gaseous form, small cracks can easily be produced due to high pressure from the hydrogen gas. In this research, in order to determine the root cause of the fracture in pole fastening screws resulting from hydrogen embrittlement in typical electric motors, additional factors that accelerate hydrogen embrittlement fracture were selectively applied, including a small fillet in the head–shank transition and excessive hardness, and parametric study was performed experimentally.  相似文献   

16.
吐丝机螺栓断裂的失效分析   总被引:1,自引:0,他引:1  
采用化学成分分析、宏观扣微观检验、金相组织分析和力学性能测定等方法分析了吐丝机用高强度螺栓发生断裂的原因。结果表明,由于机加工不当而在螺纹根部产生表面缺陷,并且这些表面缺陷周围在随后的热处理过程中发生全脱碳,大大降低了螺栓的疲劳强度,导致螺栓在使用过程中早期疲劳断裂。  相似文献   

17.
高强螺栓断裂原因分析   总被引:1,自引:0,他引:1  
对断裂的高强度螺栓断口及其腐蚀产物、螺栓表面存在的微裂纹进行了观察分析;对螺栓材料进行了热处理、氢脆敏感性和力学性能试验。结果表明,引起断裂发生的裂纹源─—微裂纹是Cl ̄-应力腐蚀及氢脆交互作用的结果。断裂螺栓材料变脆是由于时效致使晶界产生铁铬碳化物偏聚引起的。对断口形貌和断裂过程用断裂力学方法提出了解释。  相似文献   

18.
弹簧在弹栓试验时发生断裂。采用化学成分分析、金相检验和扫描电镜分析等手段,对断裂弹簧进行了分析。结果表明,弹簧在去氢时未严格按工艺要求执行,致使大量的氢残留并呈弥散分布形态,进而形成沿晶裂纹。在外力作用下,导致沿晶脆性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号