首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A new composition of red strontium aluminate phosphor (Sr4Al2O7:Eu3+, Eu2+) is synthesized using a solid state reaction method in air and in a reducing atmosphere. The investigation of firing temperature indicates that a single phase of Sr4Al2O7 is formed when the firing temperature is higher than 1300 °C and that a Sr3Al2O6 phase is formed as the main peak below 1300 °C. The effects of firing temperature and doping concentration on luminescent properties are investigated. Sr4Al2O7 phosphors exhibit the typical red luminescent properties of Eu3+ and Eu2+. A comparison photoluminescence study with Sr3Al2O6 phosphor shows that Sr4Al2O7 has higher emission intensity than Sr3Al2O6 as a result of the higher optimum doping concentration of Sr4Al2O7 phosphor.  相似文献   

2.
Eu2+ and Dy3+ ion co-doped Sr3Al2O6 red-emitting long afterglow phosphor was synthesized by sol-gel-combustion methods using Sr(NO3)2, Al(NO3)3·9H2O, Eu2O3, Dy2O3, H3BO3 and C6H8O7·H2O as raw materials. The crystalline structure of the phosphors were characterized by X-ray diffraction, luminescent properties of phosphors were analyzed by fluorescence spectrophotometer. The effect of excitation wavelengths on the luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors was discussed. The emission peak of Sr3Al2O6:Eu2+, Dy3+ phosphor lays at 516 nm under the excitation of 360 nm, and at 612 nm under the excitation of 468 nm. The results reveal that the Sr3Al2O6:Eu2+, Dy3+ phosphor will emit a yellow-green light upon UV illumination, and a bright red light upon visible light illumination. The emission mechanism was discussed according to the effect of nephelauxetic and crystal field on the 4f65d1 → 4f7 transition of the Eu2+ ions in Sr3Al2O6. The afterglow time of (Sr0.94Eu0.03Dy0.03)3 Al2O6 phosphors lasts for over 600s after the excited source was cut off.  相似文献   

3.
The detailed preparation process of Eu2+ and Dy3+ ion co-doped Sr3Al2O6 phosphor powders with red long afterglow by sol–gel-combustion method in the reducing atmosphere is reported. X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the effects of synthesis temperature on the crystal characteristics, morphology and luminescent properties of the as-synthesized Sr3Al2O6:Eu2+, Dy3+ phosphors. The results reveal that Sr3Al2O6 crystallizes completely when the combustion ash is sintered at 1200 °C. The excitation and the emission spectra indicate that the excitation broad-band lies chiefly in visible range and the phosphor powders emit strong light at 618 nm under the excitation of 472 nm. The light intensity and the light-lasting time of Sr3Al2O6:Eu2+, Dy3+ phosphors are increased when increasing the calcination temperatures from 1050 to 1200 °C. The afterglow of Sr3Al2O6:Eu2+, Dy3+ phosphors sintered at 1200 °C lasts for over 600 s when the excited source is cut off. The red emission mechanism is discussed according to the effect of nephelauxetic and crystal field on the 4f65d1 → 4f7 transition of the Eu2+ ions.  相似文献   

4.
The photoluminescence, luminescence excitation, and phosphorescence spectra of SrAl2O4:Eu2+,Dy3+ and Sr4Al14O25:Eu2+,Dy3+ powder phosphors have been studied in detail at 80 and 300 K. A conceptual model is proposed for strontium-aluminate-based optical memory.  相似文献   

5.
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 °C and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 °C, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.  相似文献   

6.
SrLa1−xRExGa3O7 (RE = Eu3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechini sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 °C and crystallized fully at 900 °C. The results of FT-IR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 °C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm. The RE ions showed their characteristic emission in crystalline SrLa1−xRExGa3O7 films, i.e., Eu3+5D0-7FJ (J = 0, 1, 2, 3, 4), Tb3+5D4-7FJ (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa1−xRExGa3O7 films, respectively.  相似文献   

7.
In this article, we synthesized and characterized a novel bluish green phosphor for white light-emitting diodes, Eu2+-activated Ca12Al10.6Si3.4O32Cl5.4. The phosphor shows broad and strong absorption in the region (320-450 nm), which is essential for improving the efficiency and quality of white light-emitting diodes. When excited at 380 nm, the phosphor shows two emission bands at around 425 and 500 nm. The main emission peak of Eu2+-activated Ca12Al10.6Si3.4O32Cl5.4 exhibits red shift in comparison with that of Eu2+-activated Ca12Al14O33, which is due to the introduction of Si and Cl ions. The results show Ca12Al10.6Si3.4O32Cl5.4 is a promising host candidate for the phosphors.  相似文献   

8.
A novel blue-emitting Sr3Ga2O5Cl2:Eu2+ phosphor has been synthesized by a two-step solid-state reaction. The luminescence properties have been investigated by photoluminescence (PL) spectra, and temperature-dependent PL spectra. It shows an efficient broad absorption band around 400 nm, which matches well with the commercial near-ultraviolet light-emitting chips, and an efficient blue emission. It shows a higher thermal quenching temperature than that of Sr3Al2O5Cl2:Eu2+ phosphor. Sr3Ga2O5Cl2:Eu2+ phosphor is a promising blue-emitting component for UV chip excited white light-emitting-diodes.  相似文献   

9.
Novel 3D octahedral La2Sn2O7:Eu3+ microcrystals with pyrochlore structure have been synthesized via a hydrothermal route at 180 ºC for 36 h. The experimental results revealed that the pH value of the precursor solution not only plays an important role in determining the phase of the as-synthesized products, but also has a significant influence on the morphologies of the samples. High-quality and uniform octahedron with an average size of about 700 nm could be easily obtained at the pH value of 12. The photoluminescence spectra showed that 3D octahedral La2Sn2O7:Eu3+ displayed improved luminescence compared with the samples of with other shapes. The growth mechanism of octahedral La2Sn2O7:Eu3+ microcrystals was briefly proposed.  相似文献   

10.
A series of yellow-emitting phosphors based on a silicate host matrix, Ca3 − xSi2O7: xEu2+, was prepared by solid-state reaction method. The structure and photoluminescent properties of the phosphors were investigated. The XRD results show that the Eu2+ substitution of Ca2+ does not change the structure of Ca3Si2O7 host and there is no impurity phase for x < 0.12. The SEM images display that phosphors aggregate obviously and the shape of the phosphor particle is irregular. The EDX results reveal that the phosphors consist of Ca, Si, O, Eu and the concentration of these elements is close to the stoichiometric composition. The Ca3 − xSi2O7: xEu2+ phosphors can be excited at a wavelength of 300-490 nm, which is suitable for the emission band of near ultraviolet or blue light-emitting-diode (LED) chips. The phosphors exhibit a broad emission region from 520 to 650 nm and the emission peak centered at 568 nm. In addition, the shape and the position of the emission peak are not influenced by the Eu2+ concentration and excitation wavelength. The phosphor for x = 0.045 has the strongest excitation and emission intensity, and the Ca3 − xSi2O7: xEu2+ phosphors can be used as candidates for the white LEDs.  相似文献   

11.
Long afterglow phosphors (Ca1−xEux)2MgSi2O7 (0.002 ≤ x ≤ 0.02) were prepared by solid-state reactions under a weak reductive atmosphere. X-ray diffraction pattern, photoluminescence spectra, decay curve, afterglow spectra and thermoluminescence curves were investigated. The phosphors showed two emission peaks when they were excited by 343 nm, due to two types of Eu2+ centers existing in the Ca2MgSi2O7 lattice. However, only one emission peak can be found in their afterglow spectra. Energy transfer between Eu2+ ions in inequivalent sites was found. A possible mechanism was presented and discussed. The afterglow decay time of Ca1.998MgSi2O7:Eu0.002 was nearly 12.5 h which means it was a good long lasting phosphor.  相似文献   

12.
Forming core–shell-structured phosphor particles is an effect way to improve the properties of the rare-earth-doped inorganic luminescent systems, as well as to achieve a reduction in the amount of expensive rare earth metal. Heterogeneous nucleation processing is a commonly used method to prepared core–shell-structured particles. A nanocomposite BaSO4/Y2O3:Eu3+ powder was prepared by coating BaSO4 submicrospheres with nano-Y2O3:Eu3+ particles via heterogeneous nucleation processing. Thermogravimetric analysis and differential scanning calorimetry (TGA/DSC) were utilized to reveal the mechanism of the homogenous precipitation reaction process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) were utilized to characterize the BaSO4/Y2O3:Eu3+ core–shell-structured phosphor particles. By controlling the hydrolysis of urea, BaSO4 particles are well coated with the shell of Y2O3:Eu3+, and the nucleation of coating materials is predominantly heterogeneous rather than homogeneous. Photoluminescence spectra were utilized as well. The BaSO4/Y2O3:Eu3+ particles show a red emission corresponding to 5D07F2 of Eu3+ under the excitation of ultraviolet.  相似文献   

13.
Four new haüynes having the chemical formula Ca2Na6Al6Si6O24(XO4)2, X = Se, Te, Mo and W, were synthesized by solid-state reaction. Various substitutions were then attempted for Ca, Na, Al and Si. The replacement of Ca2+ by Sr2+ or Cd2+ was successful in Ca2Na6Al6Si6O24(XO4)2, when X = S, Cr, Mo or W, except for Cd, when X = Cr. The synthesis of Mn2Na6Al6Si6O24(XO4)2 could be made when X was Mo or W, and, among the Pb substitutions tried, Pb2Na6Al6Si6O24(SO4)2 was successful. The solubility of Li, K and Ag was partial and was different in different haüynes. Maximum solubility of Li for Na was three atoms in Ca2Na6Al6Si6O24(SO4)2 and the minimum was half an atom in Ca2Na6Al6Si6O24(XO4)2, X = Mo or W. Maximum replacement of K or Ag for Na was two atoms in Ca2Na6Al6Si6O24(XO4)2, X = Mo or W and the minimum was 0.5 in Ca2Na6Al6Si6O24(SO4)2. The solubility of Li, K and Ag was 1.5 atoms in Ca2Na6Al6Si6O24(CrO4)2. The solubility of Ga3+ or Fe3+ for Al3+ was partial. A maximum of 0.5, 3 and 4 atoms of Ga3+ can be substituted for Al3+ in sulfate, chromate and molybdate or tungstate haüynes, respectively. The solubility of Fe3+ was one atom in all haüynes. The complete replacement of Si4+ by Ge4+ was possible in M2+2Na6Al6Si6O24(XO4)2, when M = Ca, Cd or Sr, and X = Mo or W.  相似文献   

14.
A series of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+ phosphors were synthesized by the sol–gel process and were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and photoluminescence (PL) excitation and emission spectra. The experiment results revealed that the highest intensity of Sr(Al1.98, B0.02)O4:Eu2+ phosphor with pure monoclinic SrAl2O4 was achieved by annealing at the temperature of 1200 °C and the Eu2+ content of 8 mol%. However, when the post-treatment temperature for Sr(Al1.98, B0.02)O4: Eu2+ was over 1200 °C, the Sr4Al14O25 phase appeared as a minor phase, inducing small blue-shift in the emission peak (520–509 nm). Doping higher content of B3+ (y = 0.02–0.40) into SrAl2O4:Eu2+ at 1200 °C resulted in the transformation of phase from SrAl2O4 to Sr4Al14O25 as well as to SrB2Al2O7, which made the emission intensity enhance and the emission shift to a much shorter wavelength region (λp = 467 nm). It was found that, instead of purely using Sr atoms, Ca atoms with content of 20–40% could induce the crystal structure of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+, which led to SrAl2O4 from monoclinic to hexagonal phase. As a result, SrAl2O4 solid solution was obtained and then SrAl2O4:Eu2+ to emit 518 nm green light. At higher Ca content (z > 40%), a new CaAl2O4 solid solution was formed and a blue emission of CaAl2O4:Eu2+ was obtained.  相似文献   

15.
Glass-ceramic matrices containing zirconolite (nominally Ca(Zr,Hf)Ti2O7) crystals in their bulk that would incorporate high proportions of minor actinides (Np, Am, Cm) or plutonium could be envisaged for their immobilization. Zirconolite-based glass-ceramics can be prepared by controlled crystallization of zirconolite in glasses belonging to SiO2–Al2O3–CaO–Na2O–TiO2–ZrO2–HfO2 system. In this study, neodymium was used as trivalent actinides surrogate. Increasing Al2O3 concentration in glass composition had a strong effect on the nucleation rate I z of zirconolite crystals in the bulk, on the amount of neodymium incorporated in zirconolite phase and on the crystal growth rate of silicate phases (titanite + anorthite) from glass surface. These results could be explained by the existence of competition—in favor of aluminum—between Al3+ and (Ti4+, Zr4+, Hf4+) ions for their association with charge compensators cations to facilitate their incorporation in the glassy network. Differential thermal analysis (DTA) was used to study exothermal effects associated with bulk and surface crystallization. 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra showed that aluminum enters glasses network predominantly in 4-fold coordination. Neodymium optical absorption and fluorescence spectroscopies showed that the Al2O3 concentration changes performed in this study had not significant effect on Nd3+ ions environment in glasses.  相似文献   

16.
A novel kind of core-shell nanocomposite Gd2O3:Eu3+@mesoporous SiO2 was successfully fabricated, which consisted of a solvothermal synthesized Gd2O3:Eu3+ nanospheres core, a thin nonporous silica midterm layer and an ordered mesoporous silica shell. The XRD, SEM, TEM, FTIR, N2 adsorption/desorption and PL spectra were employed to characterize the composites. The cytotoxicity of Gd2O3:Eu3+@mesoporous SiO2 and Gd2O3:Eu3+ was assessed by the standard MTT assay. The composites had spherically monodisperse morphology and a narrow size distribution around 180 nm in diameter. Furthermore, they also demonstrated the strong photoluminescence of 5D0-7FJ emissions. In addition, the composites exhibited good property of sustained drug release by using ibuprofen (IBU) as model drug in the drug delivery process. Therefore, the drug release process could be easily tracked and identified through photoluminescence. Overall, the present composites have potential significant biomedical application as ideal bifunctional materials.  相似文献   

17.
Color point tuning is an important challenge for improving the practical applications of various displays, especially there are very limited white color single hosts that emits in the white spectrum. In this paper, the possibility of color tuning by substituting part of host lattice cation (Sr2+ ions) by Ca2+ or Ba2+ ions in an efficient strontium aluminate phosphor, Sr4Al14O25:Eu2+,Dy3+, is reported and found to be very promising for displays. A detail study by replacing part of Sr2+ with Ca2+ or Ba2+ has been investigated. X-ray diffraction study showed that crystal structure of Sr4Al14O25 is preserved up to 20 mol of Ca2+ ion exchange while it is limited to 10 mol of Ba2+ ions exchange. Substantial shift in the emission band and color were observed by substitution of Sr2+ by Ca2+ or Ba2+ ions. A bluish-white emission and afterglow was observed at higher Ca2+ ions substitution. Further, partial Ca2+ substitutions (up to 0.8 mol) resulted in enhanced afterglow of Sr4Al14O25:Eu2+,Dy3+ phosphor. However, Ba2+ substitution decreased the fluorescence as well afterglow of the Sr4Al14O25:Eu2+,Dy3+ phosphor significantly. The enhanced phosphorescence by partial Ca2+ substitution is explained on the basis of increased density of shallow traps associated with higher solubility of Dy3+ ions in to the host lattice due to equivalent size of Ca2+ and Dy3+ ions. Thus, Ca2+ substitution in the Sr4Al14O25:Eu2+,Dy3+ phosphor is a promising method for tuning the emission color and improving the afterglow intensity of the phosphor.  相似文献   

18.
The phosphors in the system Sr2−xyP2O7:xEu2+,yMn2+ were synthesized by solid-state reactions and their photoluminescence properties were investigated. These phosphors have strong absorption in the near UV region, which is suitable for excitation of ultraviolet light emitting diodes (UVLEDs). The orange-reddish emission of Mn2+ in these phosphors can be used as a red component in the tri-color system and may be enhanced by adjusting the Mn2+/Eu2+ ratio. The energy transfer from Eu2+ to Mn2+ is observed with a transfer efficiency of ∼0.45 and a critical distance of ∼10 Å. The results reveal that Sr2−xyP2O7:xEu2+,yMn2+ phosphors could be used in white light UVLEDs.  相似文献   

19.
Superfine powder SrLu2O4:Eu3+ was synthesized with a precursor prepared by an EDTA - sol-gel method at relatively low temperature using metal nitrate and EDTA as starting materials. The heat decomposition mechanism of the precursor, formation process of SrLu2O4:Eu3+and the properties of the particles were investigated by thermo-gravimetric (TG) - differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) analyses. The results show that pure SrLu2O4:Eu3+ superfine powder has been produced after the precursor was calcinated at 900 °C for 2 h and has an elliptical shape and an average diameter of 80-100 nm. Upon excitation with 250 nm light, all the SrLu2O4:Eu3+ powders show red and orange emissions due to the 4f-4f transitions of Eu3+ ions. The highest photoluminescence intensity at 610 nm was found at a content of about 6 mol% Eu3+. Splitting of the 5D0-7F1 emission transition revealed that the Eu3+ ions occupied two nonequivalent sites in the crystallite by substituting Lu3+ ions.  相似文献   

20.
By using splat cooling devices associated with laboratory solar furnace a new phase is obtained in the neodymium rich part of the Al2O3Nd2O3 system. X ray and optical absorption studies and comparisons with Nd4Ga2O9 show that the two phases are isostructural and monoclinic (space group P21/C) with Al3+ in tetrahedral coordination. Optical examinations show that substitution of Al3+ by Si4+ induced a disorder on the neodymium site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号