首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
类水滑石的制备与改性及其在聚丙烯阻燃中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用共沉淀法制备了镁铝类水滑石(LDHs)前驱体,加入少量聚磷酸铵(APP)制得APP-LDHs,探讨了不同质量分数APP对LDHs晶体生长的影响;当APP在LDHs前驱浆液中添加量为0.8wt%时,将APP-LDHs与季戊四醇(PER)、硅烷偶联剂KH-550进行球磨混合,制备插层包覆改性的LDHs;通过XRD、FTIR、SEM和TG等对改性前后的LDHs进行了表征;采用极限氧指数(LOI)、垂直燃烧测试(UL-94)、缺口冲击和弯曲实验等方法研究了LDHs改性前后LDHs/聚丙烯(PP)复合材料的阻燃性能及力学性能的差异。研究结果表明:APP的加入,未显著影响LDHs的层板生长,但其层板堆叠受到抑制;SEM观察表明,所制备的LDHs为片状,且经插层包覆改性后的LDHs粉体形貌较为规整,颗粒粒径为100~250 nm;改性LDHs在较高温度下的热稳定性显著优于未改性的LDHs;当PP中加入质量分数为20%的LDHs及改性LDHs时,可抑制PP燃烧时产生的熔滴,并促使LDHs/PP复合材料表面形成炭层;改性LDHs/PP复合材料具有更好的阻燃性能,且其冲击强度、弯曲强度等力学性能下降不明显。  相似文献   

2.
将黄麻纤维和聚丙烯纤维(PP)通过梳理、铺网和针刺的方式形成黄麻/PP复合材料毡,采用表面撒粉工艺,将阻燃剂β-环糊精(β-CD)、β-CD与聚磷酸铵(APP)复配热压后在黄麻/PP复合材料表面形成阻燃层,采用FTIR、极限氧指数测试仪、水平燃烧测试仪、锥形量热测试仪、热重分析测试仪、SEM及万能试验机等检测黄麻/PP复合材料阻燃性能、力学性能、成炭性能及样品表面微观形貌。结果表明:β-CD与APP复配后在黄麻/PP复合材料表面热压成膜可以显著提高复合材料的阻燃性能和热稳定性。当β-CD-APP复配阻燃剂质量分数为20wt%、β-CD与APP的质量比为1∶2时,黄麻/PP复合材料水平燃烧58 s后自熄,极限氧指数(LOI)值达到26.6%,根据日本JISD 1201—77标准,属于第三难燃等级材料,此时热释放速率和有效燃烧热值最小,700℃时的残炭量增加了11.68%。力学性能测试表明,在黄麻/PP复合材料表面增加阻燃层后,弯曲强度增加而拉伸强度不受影响。   相似文献   

3.
先采用溶胶-凝胶法制备了氧化石墨烯(GO)-SiO2杂化材料,再与聚丙烯(PP)进行熔融共混制备了GO-SiO2/PP复合材料。分别采用FTIR、XRD、XPS、DSC、SEM、动态热机械分析(DMA)、拉伸及冲击等测试手段对填料及GO-SiO2/PP复合材料的结构与性能进行了表征。FTIR和XPS分析表明,GO已经成功获得功能化。力学性能测试结果证实,GO-SiO2对PP基体具有良好的强韧化协同改性作用,且优于SiO2/PP及GO/PP复合材料体系。固定GO-SiO2中GO与SiO2的质量比为1∶1,当填料GO-SiO2的质量分数为0.1wt%时,GO-SiO2/PP复合材料的拉伸强度和冲击强度分别为38.9 MPa和7.6 kJ/m2,与纯PP基体相比分别提高了29.4%和66.3%。DSC测试表明,GO-SiO2/PP复合材料中PP的熔融温度和结晶温度分别为167.4℃和111.7℃,与纯PP相比分别提高了4.7℃和5.2℃。DMA测试表明,GO-SiO2的加入使GO-SiO2/PP复合材料的储能模量增大,损耗模量峰向更高温度移动。SEM观察表明,当加入少量的GO-SiO2时,填料能均匀的分散在基体中,但GO-SiO2过多时,则容易形成团聚。  相似文献   

4.
以氧化石墨(GO)为原料,制备了苯甲酸功能化石墨烯(BFG),采用IR和XRD对BFG结构进行了表征。再将BFG作为阻燃协效剂添加到Al(OH)3/聚丙烯(PP)中,研究不同质量比的BFG与Al(OH)3对PP材料阻燃和力学性能的影响。通过对阻燃BFG-Al(OH)3/PP复合材料进行极限氧指数(LOI)测试、热失重分析、锥形量热分析、拉伸测试及残炭SEM分析,考察BFG-Al(OH)3/PP复合材料的阻燃性能和力学性能。研究结果表明,与其他阻燃PP相比,1.5wt% BFG-38.5wt% Al(OH)3/PP的阻燃和力学性能最佳,LOI可达到24.6%,拉伸强度为20.64 MPa,且其热释放速率峰值和总热释放量比纯PP分别降低了51.5%和18.6%。  相似文献   

5.
木塑复合材料作为室外建筑装饰材料时,暴露在紫外光的照射下,易老化导致其力学性能降低、使用寿命减少。将具有高效紫外线屏蔽能力的金红石型纳米TiO2经硅烷偶联剂KH-570表面改性后,与木纤维(WF)、聚丙烯(PP)等制备了TiO2-WF/PP复合材料。对TiO2-WF/PP复合材料进行了人工加速紫外老化,并利用FTIR、TG、SEM、力学性能分析、颜色变化分析等手段,探究了纳米TiO2对WF/PP复合材料抗紫外老化的影响。结果表明:改性纳米TiO2粒子在WF/PP复合材料中均匀分散,无明显团聚,且其加入显著提高了复合材料的热稳定性;TiO2-WF/PP复合材料随着老化时间的延长,力学性能下降相对较小且颜色变化较小。当纳米TiO2的质量分数为2 wt%~3 wt%,老化2 000 h时后,TiO2-WF/PP复合材料的拉伸强度、冲击强度仅分别下降10.0%和12.6%;未加入纳米TiO2颗粒的WF/PP复合材料,则分别下降20.2%和22.6%。   相似文献   

6.
微纳米SiO2/PP复合材料增强增韧的实验研究   总被引:1,自引:0,他引:1  
为了研究无机刚性颗粒对通用塑料聚丙烯 (PP) 的力学性能的影响, 采用熔融共混方法制备了经硅烷偶联剂A-151处理的SiO2/PP 复合材料, 并通过其缺口冲击、 拉伸、 弯曲试验和冲击断面的形貌观察, 分析研究了微纳米SiO2颗粒大小、 填充量、 表面改性以及不同颗粒大小SiO2混合物对PP复合材料增韧、 增强效果的影响。实验结果表明: 纳米SiO2的加入可以同时改善其韧性、 刚性和强度; 填充量相同, 颗粒越细, SiO2/PP复合材料的力学性能越好。SiO2经改性后填充到PP基体中, 明显改善了颗粒在基体中的分散性及基体与颗粒之间界面结合性能, 使复合材料的综合力学性能得到提高。不同颗粒大小的SiO2混合后填充到PP基体中, 混合SiO2的协同效应使复合材料拉伸、 弯曲性能进一步提高, 对PP基体具有更好的增强效果, 但其冲击性能下降。   相似文献   

7.
以端羧基丁腈橡胶(CTBN)和纳米SiO2(nano SiO2)为增韧剂,先利用相反转法将CTBN与环氧树脂(EP)的共聚物制备成乳液,然后加入nano SiO2进行共混,最后加入固化剂经梯度升温固化制得nano SiO2-CTBN改性的水性环氧树脂(nano SiO2-CTBN/WEP)复合材料。通过FTIR、SEM、TEM、万能拉伸试验仪和TG对nano SiO2-CTBN/WEP复合材料的性能进行表征。结果表明:当CTBN含量为20%(与EP E-51的质量比)时,所制备的CTBN/WEP具有较好的储存稳定性,在此基础上加入nano SiO2,当其含量为3%时增韧效果最好,nano SiO2-CTBN/WEP的拉伸强度达14.5 MPa,断裂伸长率达9.1%,冲击强度为11.3 kJ/m2,弯曲强度达22.4 MPa,较未添加nano SiO2的CTBN/WEP分别提高了40.1%、27.4%、73.9%和72.7%,其初始热分解温度也提高了近25℃。  相似文献   

8.
通过球磨分散法和熔融共混法制得纳米Sb2O3/溴化环氧树脂-聚丙烯(BEO-PP)阻燃复合材料试样。采用XRD、DSC、拉伸和冲击性能测试,研究了纳米Sb2O3/BEO-PP阻燃复合材料的力学性能及其增强机制。研究结果表明:采用球磨法改性后的纳米Sb2O3颗粒在PP基体中的分散性和黏结性能得到明显改善;纳米Sb2O3颗粒的加入可改善PP基复合材料的强韧性;随着纳米Sb2O3质量分数的升高,纳米Sb2O3/BEO-PP复合材料的力学性能呈现出先升后降的趋势,PP基体的结晶度逐渐增高;当纳米Sb2O3颗粒添加量为2wt%时,纳米Sb2O3/BEO-PP复合材料表现出优异的综合性能。  相似文献   

9.
以三聚氯氰(CNC)、三羟甲基氨基甲烷(TRIS)和二乙烯三胺为原料合成了一种新型多羟基三嗪基炭化剂(TTDC)。采用傅里叶红外光谱(FT-IR)、固体核磁共振(13C-NMR)、元素分析和热重分析(TG/DTG)测试对TTDC的化学结构和热性能进行了分析。通过熔融共混的方法将聚磷酸铵(APP)、TTDC和二氧化硅(SiO2)加入聚丙烯(PP)中制备PP复合材料。通过极限氧指数(LOI)、垂直燃烧(UL-94)、TG/DTG和锥形量热(CCT)测试研究了PP复合材料的阻燃性能和热稳定性,并采用扫描电镜(SEM)和拉曼光谱对残炭的表面形貌和结构进行了研究。结果表明:APP和TTDC具有良好的协同阻燃作用,PP、APP、TTDC和SiO2比例为75∶16∶8∶1时,阻燃效果最佳,PP复合材料的LOI值为32.8%,达到UL-94 V-0级,800℃残炭量达到8.12%,热释放率峰值从纯PP的846.46kW/m2下降到236.61kW/m2。通过燃烧行为、残炭形貌和力学性能的综合分...  相似文献   

10.
采用三聚氰胺聚磷酸盐(MPP)作为阻燃剂,加入到竹纤维/聚丙烯(BF/PP)复合毡中,制备MPP-BF/PP复合材料。采用力学测试和SEM研究MPP对MPP-BF/PP复合材料力学性能和微观形貌的影响;采用极限氧指数(LOI)、热失重(TG)和吸水率为指标研究MPP对MPP-BF/PP复合材料阻燃性、热稳定性和耐水性的影响。测试表明:MPP的质量分数小于30wt%时,MPP-BF/PP复合材料弯曲强度和冲击强度随MPP质量分数的增加先增大后减小,当MPP质量分数达到5wt%时,MPP-BF/PP复合材料呈现出最佳的弯曲强度和冲击强度;MPP在MPP-BF/PP复合材料内部均匀分布,而随着MPP质量分数的增加,MPP-BF/PP复合材料断裂面的粗糙度明显提高,即MPP与PP界面相容性变差,使其力学性能降低。LOI测试结果表明,MPP可以有效提高MPP-BF/PP复合材料的阻燃性能,当MPP质量分数为30wt%时,MPP-BF/PP复合材料LOI达到24.3%。热失重测试表明,MPP的加入可提高MPP-BF/PP复合材料的热分解温度,促进其残炭率明显增大,有利于提高MPP-BF/PP复合材料阻燃性能。耐水性能测试结果表明,MPP质量分数小于20wt%时,MPP对MPP-BF/PP复合材料的耐水性能没有明显影响。采用模糊综合评价法分析表明,MPP质量分数为10wt%时,MPP-BF/PP复合材料性能最优。   相似文献   

11.
采用正交分析法,讨论混杂工艺和复合工艺对椰壳-大麻/聚丙烯(PP)复合材料力学性能的影响。结果表明,混杂处理后的椰壳-大麻/PP复合材料的力学性能均比相同复合工艺条件下的大麻/PP复合材料有较大程度的改善。椰壳纤维与大麻纤维质量比对混杂椰壳-大麻/PP复合材料力学性能影响最大,且混杂椰壳-大麻/PP复合材料的力学性能随椰壳纤维含量的增加而线性增大;混杂针刺毡中PP纤维质量分数对混杂椰壳-大麻/PP复合材料的抗弯强度影响较大,最初混杂椰壳-大麻/PP复合材料的抗弯强度随PP纤维质量分数的增加而减小,随后又随PP纤维质量分数的增加有一定程度的增大,而混杂椰壳-大麻/PP复合材料的抗拉强度则随PP纤维质量分数的增大而线性减小;混杂椰壳-大麻/PP复合材料的力学性能随复合层压温度的升高呈下降趋势。   相似文献   

12.
以稻壳为原料,以H3PO4、KOH、ZnCl2为活化剂在600℃条件下制备三种活性炭,以生物炭、三种活性炭为填料填充高密度聚乙烯(HDPE)制备生物炭/HDPE复合材料和活性炭/HDPE复合材料,并对其力学性能进行测试和分析。结果表明,活性炭比生物炭具有更高的比表面积和发达的孔隙结构,其中经H3PO4活化制备的活性炭比表面积最高,为714.27 m2/g;活性炭/HDPE复合材料比生物炭/HDPE复合材料具有更佳的力学性能,相对于其他材料而言,经H3PO4活化制备的活性炭/HDPE复合材料具有较佳的弯曲性能、拉伸性能、刚性、弹性、抗蠕变性能及抗应力松弛能力,其弯曲强度、弯曲模量、拉伸强度、拉伸模量分别为38.66 MPa、2.46 GPa、32.17 MPa、1.95 GPa。本研究可为活性炭的材料化利用提供有益的借鉴经验。   相似文献   

13.
PP-g-Si与KH550对聚丙烯/滑石粉体系的增容效果   总被引:4,自引:0,他引:4  
硅烷接枝聚丙烯(PP-g-Si)对聚丙烯/滑石粉(PP/Ta)混合体系有一定的增容作用,可使复合材料的力学性能得以提高,占复合材料总质量3.5%的PP-g-Si(相当于含硅烷0.2%)对PP/Ta体系的增容效果与含0.8%(质量分数)的KH550的增容效果相当,KH550对复合材料中聚丙烯(PP)的结晶熔融行为基本上无影响。而PP-g-Si能进一步使材料中PP的结晶峰温和熔融峰温提高。  相似文献   

14.
利用激光选区熔化(SLM)技术制备了原位自生TiB2纳米陶瓷颗粒增强Al-Si基复合材料,并对成形后的TiB2/Al-Si复合材料进行不同的热处理。通过XRD物相分析、SEM微观组织观察、电子背散射衍射(EBSD)、EDS元素扫描分析和力学拉伸试验等对TiB2/Al-Si复合材料的微观组织进行观察和力学性能测试。研究表明,在原位自生TiB2纳米陶瓷颗粒和SLM快速凝固特性的共同作用下,SLM成形的原位自生TiB2/Al-Si复合材料具有超细晶结构,平均晶粒尺寸为1.1 μm;TiB2/Al-Si复合材料的力学性能优异,屈服强度为262 MPa,抗拉强度为435 MPa,延伸率为11.88%。对比经不同热处理的TiB2/Al-Si复合材料,直接时效处理(150℃/12 h)的TiB2/Al-Si复合材料性能最优,抗拉强度达到488 MPa,提高了53 MPa,延伸率降低至7.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号