首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
以1Cr18Ni9Ti、Ti-6Al-4V为金属基底,通过在B4C+Ti体系中引入CrO_3+Al铝热剂,调整反应体系绝热温度依次为3 193、3 282、3 290及3 473K,采用超重力场反应连接制备TiB_2-TiC/1Cr18Ni9Ti和TiB_2-TiC/Ti-6Al-4V梯度复合材料,发现随着反应绝热温度升高,陶瓷/金属界面区厚度不仅因金属熔深增加而增大,并且残存于界面上的Al_2O_3夹杂也随之增多。分别对B4C+Al体系与CrO_3+Al铝热剂进行配制、球磨活化、压制成坯并依次填料入坩埚后,发现残存于界面上的Al_2O_3夹杂完全消除,同时发现在TiB_2-TiC/1Cr18Ni9Ti界面上生成三维网络陶瓷/金属梯度复合结构,而在TiB_2-TiC/Ti-6Al-4V界面上形成跨尺度多层次梯度复合结构。  相似文献   

2.
超重力下燃烧合成TiB_2-TiC共晶复合陶瓷   总被引:6,自引:0,他引:6  
采用超重力下燃烧合成技术,制备出TiB2-TiC共晶复合陶瓷。XRD、SEM与EDS结果表明,复合陶瓷主要由大量细小的TiB2片晶均匀分布于TiC基体上的共晶组织构成,而富钛ε碳化物(Ti,Cr)C1-x则断续分布于TiC基体间,同时在基体中还孤立分布着少量的、形态不规则的α-Al2O3晶粒或Al2O3-ZrO2共晶团组织。高温化学反应使所有产物均呈液态,且超重力的引入诱发熔体内部Stocks流,从而获得液态Ti-Cr-C-B与液态氧化物的分层熔体,液态Ti-Cr-C-B在远离平衡态下发生共晶反应生成TiB2-TiC共晶复合陶瓷。性能测试表明,随着B4C+Ti+C在燃烧体系中质量分数增加,TiB2-TiC共晶复合陶瓷相对密度和断裂韧性变化不大,分别为97%~99%与6.5~7.1 MPa.m1/2,而维氏硬度与弯曲强度则逐渐增加,最高可达28.6 GPa与615 MPa。  相似文献   

3.
为了提高喷嘴的抗冲蚀磨损能力,将梯度功能材料理论运用于喷嘴材料的设计中,改传统的均质喷嘴材料为非均质喷嘴材料,提出在梯度陶瓷喷嘴制备中将残余压应力引入喷嘴入口的设计目标.在组成分布指数一定的条件下,针对主要设计参数对梯度陶瓷喷嘴残余应力的影响进行有限元分析,探讨了梯度层厚度、临界梯度层材料组分差对SiC/(W,Ti)C单梯度陶瓷喷嘴残余热应力的影响规律,在组成分布指数取0.5时,优化SiC/(W,Ti)C梯度陶瓷喷嘴梯度层厚和临界梯度层材料组分差.结果表明,残余应力随梯度层厚h及临界梯度层SiC体积组分差的不同产生很大差异,合理设计梯度层厚h及临界梯度层SiC体积组分差可在喷嘴入口形成有效残余压应力,最佳梯度层厚为5mm,临界梯度层SiC组分差小于5%(体积分数).  相似文献   

4.
钛合金表面宽带激光熔覆梯度生物陶瓷复合涂层   总被引:9,自引:0,他引:9  
为了减少激光熔覆过程中基材与生物陶瓷涂层之间的热应力,设计了一种梯度生物陶瓷复合涂层并采用宽带激光熔覆技术在Ti-6Al-4V合金上制备了梯度生物陶瓷复合涂层,对其组织和显微硬度进行了研究。结果表明:钙和氧元素主要分布在生物陶瓷涂层中;钛和钒元素主要分布在基材和合金化层内;磷元素分布在合金层与陶瓷层中。合金层中基底组织上分布着白色共晶组织和白色颗粒,基底组织主要为Ti(Al、P、Fe、V)相,白色共晶组织主要为Fe2Ti4O AlV3,白色颗粒为结晶析出的Al3V0.333 Ti0.666;生物陶瓷层中的基底组织为胞状晶,其上分布有灰色相和白色颗粒相,胞状晶主要为CaO、CaTiO3和HA,灰色相为β-TCP及Ca2Ti2O6,白色颗粒相为TiO2。合金层的最高硬度为1600Hv0.2,生物陶瓷涂层显微硬度最大值约为1300Hv0.2。  相似文献   

5.
以Ti、B_4C和SiC晶须(SiC_w)为原料,采用自蔓延高温合成法制备了多孔TiB__2-TiC复合材料。讨论了SiC_w含量对TiB__2-TiC复合材料物相、组织形貌、孔隙率和抗压强度的影响。结果表明:不添加SiC_w时,复合材料中主要物相为贫硼相TiB和Ti_3B_4以及TiC和少量TiB__2;在5Ti+B_4C体系中加入SiC_w后,贫硼相TiB和Ti_3B_4逐渐减少直至消失,而出现富硼相TiB__2和TiC的含量增加。随着SiC_w含量的增加,复合材料的孔隙率逐渐增加,由38.46%增加至5_2.78%。当SiC_w含量小于1.0时,随着SiC_w含量的增加,多孔TiB_2-TiC复合材料的抗压强度明显增加,当SiC_w含量为1.0时,复合材料的抗压强度达到最大值56.04MPa。Ti与SiC_w反应会生成TiC、Ti_3SiC_2和TiSi_2等物相,消耗一定量的Ti,使得与B4C反应的Ti量减少,从而促进富硼相TiB_2形成和TiC的增多。并且在SiC_w表面形成颗粒状TiC或者层片状Ti_3SiC_2,增加SiC_w与TiB_2-TiC基体之间的结合,更有利于发挥SiC_w的强化作用。  相似文献   

6.
采用电场激活压力辅助合成技术(FAPAS)并结合原位反应的方法制备TiB2-TiC-Ni/TiAl/Ti功能梯度材料,研究了TiB2-TiC-Ni/TiAl/Ti功能梯度材料的界面微结构特征及其结合强度,分析了梯度材料界面的微观组织和元素分布,并分析了试样的抗剪切强度和显微硬度。研究表明:制备的TiB2-TiC-Ni/...  相似文献   

7.
目的 研究微量B元素对铸造Ti2AlNb合金组织和力学性能的影响,优选出适合铸造工艺的Ti2AlNb合金成分,为推进铸造Ti2AlNb合金的应用提供理论和数据支撑。方法 以Ti–22Al–25Nb(原子数分数,下同)、Ti–22Al–24Nb–0.1B、Ti–22Al–24Nb–0.2B合金为研究对象,采用光学显微镜、扫描电镜研究不同B含量合金铸态、热等静压态的宏、微观组织及析出相形态。采用XRD分析合金的物相组成,室温拉伸性能测试评价力学性能,通过扫描电镜观察拉伸断口,分析微量B元素对力学性能产生影响的原因。结果 添加微量B元素可以明显细化Ti–22Al–25Nb合金的晶粒尺寸,随着B元素原子数分数增加至0.2%,晶粒尺寸由958 μm减小至548 μm。B元素在合金中主要以固溶态、TiB和TiB2针片状析出相形式存在,随着B含量的增加,硼化物长度和厚度尺寸略微增加、体积分数由0.3%增加至0.8%。0.1B合金的室温屈服强度、抗拉强度和伸长率与原合金水平相当,0.2B合金的屈服强度提升,但其抗拉强度和伸长率均降低。断口分析显示,0.2B合金塑性降低是硼化物增多、集中分布引起脆性断裂所致。结论 综合B元素对流动性的改善效果,优选出适合铸造工艺的合金成分为Ti–22Al–24Nb–0.1B。  相似文献   

8.
TiB_2颗粒增强钛基复合材料抗氧化性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用粉末冶金法制备了TiB2/Ti颗粒增强钛基复合材料,研究了不同烧结温度(800、900、1000和1100℃)TiB2/Ti复合材料在600、700、800和900℃空气中的恒温氧化行为,分析了TiB2对钛基复合材料氧化动力学行为的影响,并对氧化层表面的相组成、形貌以及氧化层剖面的显微结构进行了分析。结果表明:该复合材料的氧化层表面的氧化产物主要为金红石型TiO2,此外还有Fe2O3、Al2O3和B2O3,未发现其它类型钛的氧化物;TiB2/Ti复合材料800℃恒温空气中氧化的氧化动力学曲线初始阶段氧化速度较快,随着氧化时间的延长,形成的氧化膜减慢了氧化的速度;随着增强体TiB2体积分数的增加和烧结温度的提高,复合材料的抗氧化性能提高,这主要是由于提高烧结温度和提高增强体TiB2的体积分数均有利于氧化层的致密度提高,从而提高了材料的抗氧化性能。  相似文献   

9.
以BN和Ni60A合金粉末作为预置涂层,采用氩弧热源在Ti6Al4V合金表面原位合成陶瓷颗粒复合涂层。经过热力学计算和扫描电子显微镜线扫描分析,利用X射线衍射仪进行涂层物相分析,确定陶瓷颗粒为TiB2和TiN。利用扫描电子显微镜观察微观组织形貌,并探讨TiB2-TiN颗粒的形成机理。实验结果表明,采用适宜的熔覆材料合金粉末成分和熔覆工艺参数,可以获得TiB2-TiN颗粒复合涂层,TiB2形态呈棒状和细条状,TiN形态呈颗粒状。颗粒尺寸细小,分布均匀,且与基体冶金结合。复合涂层的显微组织沿层深方向分为熔覆区、结合区和热影响区。  相似文献   

10.
研究了少量TiB_2对两相型钛合金Ti-6Al-4V的"晶粒长大行为的影响。在"相变点以上进行高温固溶+水淬处理,之后进行显微组织观察确定合金晶粒度。实验研究发现,TiB_2在钛合金中最终转化为TiB,这些TiB粒子主要分布在晶界处并显著限制了合金的晶粒长大。在超过相变点100℃固溶120min,Ti-6Al-4V-0.32TiB_2合金β晶粒仅仅长大了79μm。动力学分析表明,Ti-6Al-4V-0.32TiB_2的晶粒长大指数分布在0.036~0.037范围内,远远小于Ti-6Al-4V合金,而晶粒长大激活能是Ti-6Al-4V合金的4倍。理论计算结果表明,晶界TiB粒子的排列方式也显著影响钉扎效果。  相似文献   

11.
SiC陶瓷具有优异的综合性能, 通过钎焊获得高强度接头是其获得广泛应用的重要前提。研究采用Al-(10, 20, 30, 40)Ti(Ti的名义原子含量10%、20%、30%、40%)系列合金, 在1550 ℃条件下, 对SiC陶瓷进行钎焊30 min。当中间层厚度为~50 μm时, SiC钎焊接头的平均剪切强度处于100~260 MPa范围内。当采用Al-20Ti合金作为钎料时, 随着中间层厚度从~100 μm减小至25 μm, 钎焊接头的平均强度逐渐提高, 且最大强度~315 MPa。同时, 钎焊中间层中(Al)相逐渐减少直至消失, 只留下Al4C3、TiC和(Al,Si)3Ti相。SiC/Al-20Ti/SiC钎焊接头的断裂主要发生在靠近中间层/陶瓷界面位置的陶瓷基体内。  相似文献   

12.
以Ti、Al和B4C为原料,采用真空电弧熔炼的方法制备了含Ti_2AlC-TiB_2增强相的TiAl基复合材料;分析了添加不同含量的Ti_2AlC-TiB_2对复合材料的物相组成、组织结构及力学性能的影响,并探讨了微观组织结构的形成机制。结果表明:Ti_2AlC-TiB_2/TiAl复合材料主要由TiAl、Ti3Al、TiB_2和Ti_2AlC等物相组成,TiB_2和Ti_2AlC分布在层片状的TiAl+Ti3Al基体中;随着原料中B4C含量的增多,复合材料组织中Ti_2AlC-TiB_2含量增多,且TiAl基体的晶粒被明显细化,TiB_2和Ti_2AlC分布于基体晶界或晶内。Ti_2AlC主要为层片状和板条状,尺寸5~15μm,而TiB_2颗粒形态与其含量有关,当Ti_2AlC-TiB_2含量小于20wt%时,TiB_2颗粒呈针棒状,尺寸为0.5~5μm,当Ti_2AlC-TiB_2含量增加到30wt%时,TiB_2颗粒主要呈块状,尺寸为5~20μm。Ti_2AlC由TiC与Ti-Al熔体发生包晶反应生成,Ti_2AlC和TiB_2的形成提高了Ti_2AlC-TiB_2/TiAl复合材料的硬度、塑性和抗压强度。当4Ti+Al+B4C的加入量为10wt%时,复合材料的变形量比纯TiAl提高14%,而抗压强度达到最高值1 591 MPa。Ti_2AlC和TiB_2通过裂纹偏转、颗粒钉扎、拔出等机制对Ti_2AlC-TiB_2/TiAl复合材料起到增强增塑的作用。  相似文献   

13.
TiB2-TiC复相陶瓷的结构与性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
TiB2-TiC复合粉制备的TiB2-TiC复相陶瓷的相对密度达99.8%,硬度为 93.2HRA,断裂韧性为5.53MPa·m1/2。显微结构研究表明:TiB2-TiC烧结体体内的位错和残余气孔影响材料性能。复合粉烧结体晶粒尺寸细小,大小分布均匀,晶粒之间界面干净,无杂质沉积,烧结体中TiB2和TiC两相界面接合处元素B,C,Ti的含量存在梯度变化,都有利于烧结体性能提高。TiB2晶粒生长存在取向性。  相似文献   

14.
TiB2-TiC复合粉的自蔓延高温还原合成   总被引:9,自引:3,他引:6       下载免费PDF全文
热分析结果表明,对于B2O3-TiO2-Mg-C体系,可利用SHS还原技术合成出TiB2-TiC陶瓷复合粉。其化学反应机理为:Mg先还原B2O3和TiO2,新生的Ti与B和C反应生成TiB2和TiC; TiO2的还原经历了TiO2→TiO→Ti的逐步过程。采用一定的酸洗工艺得到了纯净的TiB2-TiC陶瓷复合粉。复合粉中包含六方片状TiB2和圆球状TiC;复合粉中1μm以下颗粒质量百分数超过45%,87%以上的颗粒大小在3μm以下。在TiB2-TiC中,TiC<em>y以一种贫碳结构存在,物料中Ti被B或C结合形成TiB2和TiC<em>y,y的值为0.7483。  相似文献   

15.
Ti-B4C反应机理和扩散路径的研究   总被引:1,自引:0,他引:1  
利用差热分析和XRD分析确定了Ti与BC发生化学反应的温度和1600℃保温0.5h后的物相组成,通过Ti-BC扩散偶对反应机理进行了研究,实验结果表明在反应过程中扩散路径是:Ti/TiC/TiB/TiB/BC,在扩散偶中Ti与BC作为反应相始终存在,生成物中 TiB, TiB和 TiC三相同时存在,而对于粉料烧结后只有 TiB和TiC两相.  相似文献   

16.
The interfacial structures of diamond coatings deposited on pure titanium substrate were analyzed using scanning electron microscopy and grazing incidence X-ray diffraction. Results showed that beneath the diamond coating, there was one titanium carbide and hydride interlayer, followed by a heat-affected and carbon/hydrogen diffused Ti layer. Residual stress in the diamond coating and TiC interlayer under different process parameters were measured using Raman and X-ray diffraction (XRD) methods. Diamond coatings showed large compressive stress on the order of a few giga Pascal. XRD analysis also showed the presence of compressive stress in the TiC interlayer and tensile stress in the Ti substrate. With increasing deposition duration, or decreasing plasma power and concentration of CH4 in gas mixture, the compressive residual stress in the diamond coating decreased. The large residual stress in the diamond coating resulted in poor adhesion of the coatings to substrate, but adhesion was also related to other factors, such as the thickness and nature of the TiC interlayer, etc. A graded interlayer design was proposed to lower the thermal stress, modify the interfacial structure and improve the adhesion strength.  相似文献   

17.
《Composites Part B》2013,44(8):3334-3337
Ti–5Al–5Mo–5V–1Fe–1Cr Ti alloy and Ti–5Al–5Mo–5V–1Fe–1Cr Ti matrix composites containing different weight fractions of trace TiB and TiC are fabricated via in situ synthesis method. The as-cast ingots are subjected to thermo-mechanical processing and heat treatment. The Widmannstatten structure is obtained after the heat treatment. The microstructure length scales of the materials are identified. The identification indicates that 0.4 wt.% TiB and 0.1 wt.% TiC can reduce the average size of the β grains by more than 50%. Whereas the extent of the microstructure refinement gradually decreases while increasing the weight fraction of the trace reinforcements. The influences of weight fraction and morphology of the trace TiB and TiC on microstructure refinement are researched in this work. Moreover, the tensile properties of the heat-treated materials are examined. It is revealed that Hall–Petch mechanism plays an identically important role in improving the mechanical properties of the composites comparing with the load bearing and dispersion strengthening of the trace reinforcements.  相似文献   

18.
This work investigates elastic-plastic crack growth in ceramic/metal functionally graded materials (FGMs). The study employs a phenomenological, cohesive zone model proposed by the authors and simulates crack growth by the gradual degradation of cohesive surfaces ahead of the crack front. The cohesive zone model uses six material-dependent parameters (the cohesive energy densities and the peak cohesive tractions of the ceramic and metal phases, respectively, and two cohesive gradation parameters) to describe the constitutive response of the material in the cohesive zone. A volume fraction based, elastic-plastic model (extension of the original Tamura-Tomota-Ozawa model) describes the elastic-plastic response of the bulk background material. The numerical analyses are performed using WARP3D, a fracture mechanics research finite element code, which incorporates solid elements with graded elastic and plastic properties and interface-cohesive elements coupled with the functionally graded cohesive zone model. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive zone model and the computational scheme to analyze crack growth in a single-edge notch bend, SE(B), specimen made of a TiB/Ti FGM. Cohesive parameters are calibrated using the experimentally measured load versus average crack extension (across the thickness) responses of both Ti metal and TiB/Ti FGM SE(B) specimens. The numerical results show that with the calibrated cohesive gradation parameters for the TiB/Ti system, the load to cause crack extension in the FGM is much smaller than that for the metal. However, the crack initiation load for the TiB/Ti FGM with reduced cohesive gradation parameters (which may be achieved under different manufacturing conditions) could compare to that for the metal. Crack growth responses vary strongly with values of the exponent describing the volume fraction profile for the metal. The investigation also shows significant crack tunneling in the Ti metal SE(B) specimen. For the TiB/Ti FGM system, however, crack tunneling is pronounced only for a metal-rich specimen with relatively smaller cohesive gradation parameter for the metal.  相似文献   

19.
Ti–5Al–5Mo–5V–1Fe–1Cr Ti alloy and Ti–5Al–5Mo–5V–1Fe–1Cr Ti matrix composites containing different weight fractions of trace TiB and TiC are fabricated via in situ synthesis method. The as-cast ingots are subjected to thermo-mechanical processing and heat treatment. The Widmannstatten structure is obtained after the heat treatment. The microstructure length scales of the materials are identified. The identification indicates that 0.4 wt.% TiB and 0.1 wt.% TiC can reduce the average size of the β grains by more than 50%. Whereas the extent of the microstructure refinement gradually decreases while increasing the weight fraction of the trace reinforcements. The influences of weight fraction and morphology of the trace TiB and TiC on microstructure refinement are researched in this work. Moreover, the tensile properties of the heat-treated materials are examined. It is revealed that Hall–Petch mechanism plays an identically important role in improving the mechanical properties of the composites comparing with the load bearing and dispersion strengthening of the trace reinforcements.  相似文献   

20.
通过调整反应体系中Ti、 C及B之间的原子摩尔比, 采用超重力下燃烧合成工艺, 制备出TiB2系列摩尔分数的TiC-TiB2复合陶瓷。利用场发射扫描电镜(FESEM)观察了复合陶瓷微观组织, 研究了TiB2成分对复合陶瓷力学性能的影响。结果表明: 随着TiB2摩尔含量增加, 陶瓷基体逐渐从TiC球晶组织转化为TiB2片晶组织, 在TiB2摩尔分数为50%时, 可获得细晶乃至超细晶TiC-TiB2复合陶瓷, 而且残留于基体上的α-Al2O3夹杂量也最低。陶瓷相对密度、 Vickers硬度与弯曲强度均在50%TiB2(摩尔分数, 下同)时呈现最大值, 而陶瓷断裂韧性则在66.7% TiB2时出现最高值。陶瓷断裂模式为TiC穿晶断裂与TiB2沿晶断裂的混合模式, 且随TiB2摩尔分数增加至66.7%, TiC穿晶断裂倾向显著减弱而TiB2沿晶断裂倾向明显增强。TiC-TiB2细晶及超细晶凝固组织的获得使TiC-50%TiB2复合陶瓷在小尺寸TiB2片晶诱发的裂纹偏转、 裂纹桥接及片晶拔出增韧机制作用下, 具有最高的弯曲强度及较高的断裂韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号