首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Core–multishelled structures with controlled chemical composition have attracted great interest due to their fascinating electrochemical performance. Herein, a metal–organic framework (MOF)‐on‐MOF self‐templated strategy is used to fabricate okra‐like bimetal sulfide (Fe7S8/C@ZnS/N‐C@C) with core–double‐shelled structure, in which Fe7S8/C is distributed in the cores, and ZnS is embedded in one of the layers. The MOF‐on‐MOF precursor with an MIL‐53 core, a ZIF‐8 shell, and a resorcinol–formaldehyde (RF) layer (MIL‐53@ZIF‐8@RF) is prepared through a layer‐by‐layer assembly method. After calcination with sulfur powder, the resultant structure has a hierarchical carbon matrix, abundant internal interface, and tiered active material distribution. It provides fast sodium‐ion reaction kinetics, a superior pseudocapacitance contribution, good resistance of volume changes, and stepwise sodiation/desodiation reaction mechanism. As an anode material for sodium‐ion batteries, the electrochemical performance of Fe7S8/C@ZnS/N‐C@C is superior to that of Fe7S8/C@ZnS/N‐C, Fe7S8/C, or ZnS/N‐C. It delivers a high and stable capacity of 364.7 mAh g?1 at current density of 5.0 A g?1 with 10 000 cycles, and registers only 0.00135% capacity decay per cycle. This MOF‐on‐MOF self‐templated strategy may provide a method to construct core–multishelled structures with controlled component distributions for the energy conversion and storage.  相似文献   

2.
Carbon micro‐/nanocages have attracted great attention owing to their wide potential applications. Herein, a self‐templated strategy is presented for the synthesis of a hydrangea‐like superstructure of open carbon cages through morphology‐controlled thermal transformation of core@shell metal–organic frameworks (MOFs). Direct pyrolysis of core@shell zinc (Zn)@cobalt (Co)‐MOFs produces well‐defined open‐wall nitrogen‐doped carbon cages. By introducing guest iron (Fe) ions into the core@shell MOF precursor, the open carbon cages are self‐assembled into a hydrangea‐like 3D superstructure interconnected by carbon nanotubes, which are grown in situ on the Fe–Co alloy nanoparticles formed during the pyrolysis of Fe‐introduced Zn@Co‐MOFs. Taking advantage of such hierarchically porous superstructures with excellent accessibility, synergetic effects between the Fe and the Co, and the presence of catalytically active sites of both metal nanoparticles and metal–Nx species, this superstructure of open carbon cages exhibits efficient bifunctional catalysis for both oxygen evolution reaction and oxygen reduction reaction, achieving a great performance in Zn–air batteries.  相似文献   

3.
Transition metal oxides (TMOs) are regarded as promising candidates for anodes of lithium ion batteries, but their applications have been severely hindered by poor material conductivity and lithiated volume expansion. As a potential solution, herein is presented a facile approach, by electrospinning a manganese‐based metal organic framework (Mn‐MOF), to fabricate yolk–shell MnOx nanostructures within carbon nanofibers in a botryoid morphology. While the yolk–shell structure accomodates the lithiated volume expansion of MnOx, the fiber confinement ensures the structural integrity during charge/discharge, achieving a so‐called double‐buffering for cyclic volume fluctuation. The formation mechanism of the yolk–shell structure is well elucidated through comprehensive instrumental characterizations and cogitative control experiments, following a combined Oswald ripening and Kirkendall process. Outstanding electrochemical performances are demonstrated with prolonged stability over 1000 cycles, boosted by the double‐buffering design, as well as the “breathing” effect of lithiation/delithiation witnessed by ex situ imaging. Both the fabrication methodology and electrochemical understandings gained here for nanostructured MnOx can also be extended to other TMOs toward their ultimate implementation in high‐performance lithium ion batteries (LIBs).  相似文献   

4.
The recently emerging metal–air batteries equipped with advanced oxygen electrodes have provided enormous opportunities to develop the next generation of wearable and bio‐adaptable power sources. Theoretically, neutral electrolyte‐based Mg–air batteries possess potential advantages in electronics and biomedical applications over the other metal–air counterparts, especially the alkaline‐based Zn–air batteries. However, the rational design of advanced oxygen electrode for Mg–air batteries with high discharge voltage and capacity under neutral conditions still remains a major challenge. Inspired by fibrous string structures of bufo‐spawn, it is reported here that the scalable synthesis of atomic Fe–Nx coupled open‐mesoporous N‐doped‐carbon nanofibers (OM‐NCNF‐FeNx) as advanced oxygen electrode for Mg–air batteries. The fabricated OM‐NCNF‐FeNx electrodes present manifold advantages, including open‐mesoporous and interconnected structures, 3D hierarchically porous networks, good bio‐adaptability, homogeneously coupled atomic Fe–Nx sites, and high oxygen electrocatalytic performances. Most importantly, the assembled Mg–air batteries with neutral electrolytes reveal high open‐circuit voltage, stable discharge voltage plateaus, high capacity, long operating life, and good flexibility. Overall, the discovery on fabricating atomic OM‐NCNF‐FeNx electrode will not only create new pathways for achieving flexible, wearable, and bio‐adaptable power sources, but also take a step towards the scale‐up production of advanced nanofibrous carbon electrodes for a broad range of applications.  相似文献   

5.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

6.
Over the past two decades, metal–organic frameworks (MOFs), a type of porous material, have aroused great interest as precursors or templates for the derivation of metal oxides and composites for the next generation of electrochemical energy storage applications owing to their high specific surface areas, controllable structures, and adjustable pore sizes. The electrode materials, which affect the performance in practical applications, are pivotal components of batteries and supercapacitors. Metal oxide composites derived from metal–organic frameworks possessing high reversible capacity and superior rate and cycle performance are excellent electrode materials. In this Review, potential applications for MOF‐derived metal oxide composites for lithium‐ion batteries, sodium‐ion batteries, lithium–oxygen batteries, and supercapacitors are studied and summarized. Finally, the challenges and opportunities for future research on MOF‐derived metal oxide composites are proposed on the basis of academic knowledge from the reported literature as well as from experimental experience.  相似文献   

7.
Cobalt sulfide (CoS2) is considered one of the most promising alternative anode materials for high‐performance lithium‐ion batteries (LIBs) by virtue of its remarkable electrical conductivity, high theoretical capacity, and low cost. However, it suffers from a poor cycling stability and low rate capability because of its volume expansion and dissolution of the polysulfide intermediates in the organic electrolytes during the battery charge/discharge process. In this study, a novel porous carbon/CoS2 composite is prepared by using nano metal–organic framework (MOF) templates for high‐preformance LIBs. The as‐made ultrasmall CoS2 (15 nm) nanoparticles in N‐rich carbon exhibit promising lithium storage properties with negligible loss of capacity at high charge/discharge rate. At a current density of 100 mA g?1, a capacity of 560 mA h g?1 is maintained after 50 cycles. Even at a current density as high as 2500 mA g?1, a reversible capacity of 410 mA h g?1 is obtained. The excellent and highly stable battery performance should be attributed to the synergism of the ultrasmall CoS2 particles and the thin N‐rich porous carbon shells derieved from nanosized MOF precusors.  相似文献   

8.
Lithium–sulfur (Li–S) batteries, based on the redox reaction between elemental sulfur and lithium metal, have attracted great interest because of their inherently high theoretical energy density. However, the severe polysulfide shuttle effect and sluggish reaction kinetics in sulfur cathodes, as well as dendrite growth in lithium‐metal anodes are great obstacles for their practical application. Herein, a two‐in‐one approach with superhierarchical cobalt‐embedded nitrogen‐doped porous carbon nanosheets (Co/N‐PCNSs) as stable hosts for both elemental sulfur and metallic lithium to improve their performance simultaneously is reported. Experimental and theoretical results reveal that stable Co nanoparticles, elaborately encapsulated by N‐doped graphitic carbon, can work synergistically with N heteroatoms to reserve the soluble polysulfides and promote the redox reaction kinetics of sulfur cathodes. Moreover, the high‐surface‐area pore structure and the Co‐enhanced lithiophilic N heteroatoms in Co/N‐PCNSs can regulate metallic lithium plating and successfully suppress lithium dendrite growth in the anodes. As a result, a full lithium–sulfur cell constructed with Co/N‐PCNSs as two‐in‐one hosts demonstrates excellent capacity retention with stable Coulombic efficiency.  相似文献   

9.
Metal–organic frameworks (MOFs) have recently emerged as a type of uniformly and periodically atom‐distributed precursor and efficient self‐sacrificial template to fabricate hierarchical porous‐carbon‐related nanostructured functional materials. For the first time, a Cu‐based MOF, i.e., Cu‐NPMOF is used, whose linkers contain nitrogen and phosphorus heteroatoms, as a single precursor and template to prepare novel Cu3P nanoparticles (NPs) coated by a N,P‐codoped carbon shell that is extended to a hierarchical porous carbon matrix with identical uniform N and P doping (termed Cu3P@NPPC) as an electrocatalyst. Cu3P@NPPC demonstrates outstanding activity for both the hydrogen evolution and oxygen reduction reaction, representing the first example of a Cu3P‐based bifunctional catalyst for energy‐conversion reactions. The high performances are ascribed to the high specific surface area, the synergistic effects of the Cu3P NPs with intrinsic activity, the protection of the carbon shell, and the hierarchical porous carbon matrix doped by multiheteroatoms. This strategy of using a diverse MOF as a structural and compositional material to create a new multifunctional composite/hybrid may expand the opportunities to explore highly efficient and robust non‐noble‐metal catalysts for energy‐conversion reactions.  相似文献   

10.
Covalent organic frameworks (COF) or metal–organic frameworks have attracted significant attention for various applications due to their intriguing tunable micro/mesopores and composition/functionality control. Herein, a coordination‐induced interlinked hybrid of imine‐based covalent organic frameworks and Mn‐based metal–organic frameworks (COF/Mn‐MOF) based on the Mn? N bond is reported. The effective molecular‐level coordination‐induced compositing of COF and MOF endows the hybrid with unique flower‐like microsphere morphology and superior lithium‐storage performances that originate from activated Mn centers and the aromatic benzene ring. In addition, hollow or core–shell MnS trapped in N and S codoped carbon (MnS@NS‐C‐g and MnS@NS‐C‐l) are also derived from the COF/Mn‐MOF hybrid and they exhibit good lithium‐storage properties. The design strategy of COF–MOF hybrid can shed light on the promising hybridization on porous organic framework composites with molecular‐level structural adjustment, nano/microsized morphology design, and property optimization.  相似文献   

11.
Lithium–sulfur (Li–S) batteries have attracted much attention in the field of electrochemical energy storage due to their high energy density and low cost. However, the “shuttle effect” of the sulfur cathode, resulting in poor cyclic performance, is a big barrier for the development of Li–S batteries. Herein, a novel sulfur cathode integrating sulfur, flexible carbon cloth, and metal–organic framework (MOF)‐derived N‐doped carbon nanoarrays with embedded CoP (CC@CoP/C) is designed. These unique flexible nanoarrays with embedded polar CoP nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Such designed CC@CoP/C cathodes with synergistic confinement (physical adsorption and chemical interactions) for soluble intermediate lithium polysulfides possess high sulfur loadings (as high as 4.17 mg cm–2) and exhibit large specific capacities at different C‐rates. Specially, an outstanding long‐term cycling performance can be reached. For example, an ultralow decay of 0.016% per cycle during the whole 600 cycles at a high current density of 2C is displayed. The current work provides a promising design strategy for high‐energy‐density Li–S batteries.  相似文献   

12.
Carbon materials derived from metal–organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal–organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium‐ion batteries, lithium–sulfur batteries, and sodium‐ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF‐derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.  相似文献   

13.
Metal–organic framework (MOF) composites have recently been considered as promising precursors to derive advanced metal/carbon‐based materials for various energy‐related applications. Here, a dual‐MOF‐assisted pyrolysis approach is developed to synthesize Co–Fe alloy@N‐doped carbon hollow spheres. Novel core–shell architectures consisting of polystyrene cores and Co‐based MOF composite shells encapsulated with discrete Fe‐based MOF nanocrystallites are first synthesized, followed by a thermal treatment to prepare hollow composite materials composed of Co–Fe alloy nanoparticles homogeneously distributed in porous N‐doped carbon nanoshells. Benefitting from the unique structure and composition, the as‐derived Co–Fe alloy@N‐doped carbon hollow spheres exhibit enhanced electrocatalytic performance for oxygen reduction reaction. The present approach expands the toolbox for design and preparation of advanced MOF‐derived functional materials for diverse applications.  相似文献   

14.
Novel composite separators containing metal–organic‐framework (MOF) particles and poly(vinyl alcohol) are fabricated by the electrospinning process. The MOF particles containing opened metal sites can spontaneously adsorb anions while allowing effective transport of lithium ions in the electrolyte, leading to dramatically improved lithium‐ion transference number tLi+ (up to 0.79) and lithium‐ion conductivity. Meanwhile, the incorporation of the MOF particles alleviates the decomposition of the electrolyte, enhances the electrode reaction kinetics, and reduces the interface resistance between the electrolyte and the electrodes. Implementation of such composite separators in conventional lithium‐ion batteries leads to significantly improved rate capability and cycling durability, offering a new prospective toward high‐performance lithium‐ion batteries.  相似文献   

15.
Carbon materials have received considerable attention as host cathode materials for sulfur in lithium–sulfur batteries; N‐doped carbon materials show particularly high electrocatalytic activity. Efforts are made to synthesize N‐doped carbon materials by introducing nitrogen‐rich sources followed by sintering or hydrothermal processes. In the present work, an in situ hollow cathode discharge plasma treatment method is used to prepare 3D porous frameworks based on N‐doped graphene as a potential conductive matrix material. The resulting N‐doped graphene is used to prepare a 3D porous framework with a S content of 90 wt% as a cathode in lithium–sulfur cells, which delivers a specific discharge capacity of 1186 mAh g?1 at 0.1 C, a coulombic efficiency of 96% after 200 cycles, and a capacity retention of 578 mAh g?1 at 1.0 C after 1000 cycles. The performance is attributed to the flexible 3D structure and clustering of pyridinic N‐dopants in graphene. The N‐doped graphene shows high electrochemical performance and the flexible 3D porous stable structure accommodates the considerable volume change of the active material during lithium insertion and extraction processes, improving the long‐term electrochemical performance.  相似文献   

16.
Ternary transition metal oxides (TMOs) are highly potential electrode materials for lithium ion batteries (LIBs) due to abundant defects and synergistic effects with various metal elements in a single structure. However, low electronic/ionic conductivity and severe volume change hamper their practical application for lithium storage. Herein, nanosheet‐assembled hollow single‐hole Ni–Co–Mn oxide (NHSNCM) spheres with oxygen vacancies can be obtained through a facile hydrothermal reaction, which makes both ends of each nanosheet exposed to sufficient free space for volume variation, electrolyte for extra active surface area, and dual ion diffusion paths compared with airtight hollow structures. Furthermore, oxygen vacancies could improve ion/electronic transport and ion insertion/extraction process of NHSNCM spheres. Thus, oxygen‐vacancy‐rich NHSNCM spheres embedded into a 3D porous carbon nanotube/graphene network as the anode film ensure efficient electrolyte infiltration into both the exterior and interior of porous and open spheres for a high utilization of the active material, showing an excellent electrochemical performance for LIBs (1595 mAh g?1 over 300 cycles at 2 A g?1, 441.6 mAh g?1 over 4000 cycles at 10 A g?1). Besides, this straightforward synthetic method opens an efficacious avenue for the construction of various nanosheet‐assembled hollow single‐hole TMO spheres for potential applications.  相似文献   

17.
Sodium (Na) metal is one of the most promising electrode materials for next‐generation low‐cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co‐doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N‐ and S‐containing functional groups on the carbon nanotubes induce the NSCNTs to be highly “sodiophilic,” which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na‐metal‐based anode (Na/NSCNT anode) exhibits a dendrite‐free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium–oxygen (Na–O2) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na–O2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next‐generation high‐energy‐density sodium‐metal batteries.  相似文献   

18.
Despite the desirable advancement in synthesizing transition‐metal phosphides (TMPs)‐based hybrid structures, most methods depend on foreign‐template‐based multistep procedures for tailoring the specific structure. Herein, a self‐template and recrystallization–self‐assembly strategy for the one‐step synthesis of core–shell‐like cobalt phosphide (CoP) nanoparticles embedded into nitrogen and phosphorus codoped porous carbon sheets (CoP?NPPCS), is first proposed. Relying on the unusual coordination ability of melamine with metal ions and the cooperative hydrogen bonding of melamine and phytic acid to form a 2D network, a self‐synthesized single precursor can be attained. Importantly, this approach can be easily expanded to synthesize other TMPs?NPPCS. Due to the unique compositional and structural characteristics, these CoP?NPPCSs manifest outstanding electrochemical performances as anode materials for both lithium‐ and potassium‐ion batteries. The unusual hybrid architecture, the high specific surface area, and porous features make the CoP?NPPCS attractive for other potential applications, such as supercapacitors and electrocatalysis.  相似文献   

19.
Improved conductivity and suppressed dissolution of lithium polysulfides is highly desirable for high‐performance lithium‐sulfur (Li‐S) batteries. Herein, by a facile solvent method followed by nitridation with NH3, a 2D nitrogen‐doped carbon structure is designed with homogeneously embedded Co4N nanoparticles derived from metal organic framework (MOF), grown on the carbon cloth (MOF‐Co4N). Experimental results and theoretical simulations reveal that Co4N nanoparticles act as strong chemical adsorption hosts and catalysts that not only improve the cycling performance of Li‐S batteries via chemical bonding to trap polysulfides but also improve the rate performance through accelerating the conversion reactions by decreasing the polarization of the electrode. In addition, the high conductive nitrogen‐doped carbon matrix ensures fast charge transfer, while the 2D structure offers increased pathways to facilitate ion diffusion. Under the current density of 0.1C, 0.5C, and 3C, MOF‐Co4N delivers reversible specific capacities of 1425, 1049, and 729 mAh g?1, respectively, and retains 82.5% capacity after 400 cycles at 1C, as compared to the sample without Co4N (MOF‐C) values of 61.3% (200 cycles). The improved cell performance corroborates the validity of the multifunctional design of MOF‐Co4N, which is expected to be a potentially promising cathode host for Li‐S batteries.  相似文献   

20.
The Li–CO2 battery is a promising energy storage device for wearable electronics due to its long discharge plateau, high energy density, and environmental friendliness. However, its utilization is largely hindered by poor cyclability and mechanical rigidity due to the lack of a flexible and durable catalyst electrode. Herein, flexible fiber‐shaped Li–CO2 batteries with ultralong cycle‐life, high rate capability, and large specific capacity are fabricated, employing bamboo‐like N‐doped carbon nanotube fiber (B‐NCNT) as flexible, durable metal‐free catalysts for both CO2 reduction and evolution reactions. Benefiting from high N‐doping with abundant pyridinic groups, rich defects, and active sites of the periodic bamboo‐like nodes, the fabricated Li–CO2 battery shows outstanding electrochemical performance with high full‐discharge capacity of 23 328 mAh g?1, high rate capability with a low potential gap up to 1.96 V at a current density of 1000 mA g?1, stability over 360 cycles, and good flexibility. Meanwhile, the bifunctional B‐NCNT is used as the counter electrode for a fiber‐shaped dye‐sensitized solar cell to fabricate a self‐powered fiber‐shaped Li–CO2 battery with overall photochemical–electric energy conversion efficiency of up to 4.6%. Along with a stable voltage output, this design demonstrates great adaptability and application potentiality in wearable electronics with a breath monitor as an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号