首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
With the gradual usage of carbon dots (CDs) in the area of antiviral research, attempts have been stepped up to develop new antiviral CDs with high biocompatibility and antiviral effects. In this study, a kind of highly biocompatible CDs (Gly‐CDs) is synthesized from active ingredient (glycyrrhizic acid) of Chinese herbal medicine by a hydrothermal method. Using the porcine reproductive and respiratory syndrome virus (PRRSV) as a model, it is found that the Gly‐CDs inhibit PRRSV proliferation by up to 5 orders of viral titers. Detailed investigations reveal that Gly‐CDs can inhibit PRRSV invasion and replication, stimulate antiviral innate immune responses, and inhibit the accumulation of intracellular reactive oxygen species (ROS) caused by PRRSV infection. Proteomics analysis demonstrates that Gly‐CDs can stimulate cells to regulate the expression of some host restriction factors, including DDX53 and NOS3, which are directly related to PRRSV proliferation. Moreover, it is found that Gly‐CDs also remarkably suppress the propagation of other viruses, such as pseudorabies virus (PRV) and porcine epidemic diarrhea virus (PEDV), suggesting the broad antiviral activity of Gly‐CDs. The integrated results demonstrate that Gly‐CDs possess extraordinary antiviral activity with multisite inhibition mechanisms, providing a promising candidate for alternative therapy for PRRSV infection.  相似文献   

2.
Introduction: The aim of this study was to investigate ketorolac (KT) systemic absolute bioavailability after sublingual (SL) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of KT following SL administration.

Methods: Ketorolac-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions. The KT-nanoparticles were administered SL as a spray to rabbits and KT plasma concentration at predetermined time points was compared to SL spray administration of KT in solution. The concentrations of KT in plasma were analyzed by ultra-performance liquid chromatography mass spectroscopy (UPLC/MS).

Results: KT-loaded chitosan nanoparticles significantly (p?Conclusions: The results of the present study suggest that SL absorption of KT illustrated flip-flop kinetics with prolonged persistence in the body compared to intravenous administration. Formulation of KT as chitosan nanoparticles has increased its systemic bioavailability after SL spray administration. The new delivery system could be an attractive approach for the delivery of KT.  相似文献   

3.
An efficient synthesis of sialic-acid-terminated glycerol dendron to chemically functionalize 2 nm and 14 nm gold nanoparticles (AuNPs) is described. These nanoparticles are highly stable and show high activity towards the inhibition of influenza virus infection. As the binding of the viral fusion protein hemagglutinin to the host cell surface is mediated by sialic acid receptors, a multivalent interaction with sialic-acid-functionalized AuNPs is expected to competitively inhibit viral infection. Electron microscopy techniques and biochemical analysis show a high binding affinity of the 14 nm AuNPs to hemagglutinin on the virus surface and, less efficiently, to isolated hemagglutinin. The functionalized AuNPs are nontoxic to the cells under the conditions studied. This approach allows a new type of molecular-imaging activity-correlation and is of particular relevance for further application in alternative antiviral therapy.  相似文献   

4.
The use of modified nanoparticles in interactions with biological targets is attracting rapidly increasing attention. In this Full Paper, the application of gold nanoparticles capped with mercaptoethanesulfonate (Au‐MES NPs) as effective inhibitors of Herpes simplex virus type 1 infection based on their ability to mimic cell‐surface‐receptor heparan sulfate is described. Mechanistic studies reveal that Au‐MES NPs interfere with viral attachment, entry, and cell‐to‐cell spread, thereby preventing subsequent viral infection in a multimodal manner. The ligand multiplicity achieved with carrier nanoparticles is crucial in generating polyvalent interactions with the virus at high specificity, strength, and efficiency. Such multivalent‐nanoparticle‐mediated inhibition is a promising approach for alternative antiviral therapy.  相似文献   

5.
Microsphere-based immunoassay by flow cytometry has gained popularity lately in protein detection and infectious disease diagnosis due to its capacity for multiplexed analysis and simple assay format. Here, we demonstrated the power of microsphere-based immunoassay for high-sensitivity detection and accurate differentiation of influenza viruses. The effects of sample volume and bead number on the assay sensitivity of viral antigen detection were studied. Compared to enzyme-linked immunosorbent assays, flow-based bead assays provided approximately 10-fold lower detection limit for viral particle detection and performed similarly for recombinant viral hemagglutinin protein detection. A four-plexed assay for influenza virus typing and influenza B virus sublineage characterization was developed to demonstrate the potential for multiplexed viral antigen detection and differentiation.  相似文献   

6.
Resistance to oseltamivir, the most widely used influenza antiviral drug, spread to fixation in seasonal influenza A(H1N1) between 2006 and 2009. This sudden rise in resistance seemed puzzling given the low overall level of the oseltamivir usage and the lack of a correlation between local rates of resistance and oseltamivir usage. We used a stochastic simulation model and deterministic approximations to examine how such events can occur, and in particular to determine how the rate of fixation of the resistant strain depends both on its fitness in untreated hosts as well as the frequency of antiviral treatment. We found that, for the levels of antiviral usage in the population, the resistant strain will eventually spread to fixation, if it is not attenuated in transmissibility relative to the drug-sensitive strain, but not at the speed observed in seasonal H1N1. The extreme speed with which the resistance spread in seasonal H1N1 suggests that the resistant strain had a transmission advantage in untreated hosts, and this could have arisen from genetic hitchhiking, or from the mutations responsible for resistance and compensation. Importantly, our model also shows that resistant virus will fail to spread if it is even slightly less transmissible than its sensitive counterpart—a finding of relevance given that resistant pandemic influenza (H1N1) 2009 may currently suffer from a small, but nonetheless experimentally perceptible reduction in transmissibility.  相似文献   

7.
Autophagy is closely related to virus‐induced disease and a comprehensive understanding of the autophagy‐associated infection process of virus will be significant for developing more effective antiviral strategies. However, many critical issues and the underlying mechanism of autophagy in virus entry still need further investigation. Here, this study unveils the involvement of autophagy in influenza A virus entry. The quantum‐dot‐based single‐virus tracking technique assists in real‐time, prolonged, and multicolor visualization of the transport process of individual viruses and provides unambiguous dissection of the autophagic trafficking of viruses. These results reveal that roughly one‐fifth of viruses are ferried into cells for infection by autophagic machineries, while the remaining are not. A comprehensive overview of the endocytic‐ and autophagic‐trafficking process indicates two distinct trafficking pathway of viruses, either dependent on Rab5‐positive endosomes or autophagosomes, with striking similarities. Expressing dominant‐negative mutant of Rab5 suggests that the autophagic trafficking of viruses is independent on Rab5. The present study provides dynamic, precise, and mechanistic insights into the involvement of autophagy in virus entry, which contributes to a better understanding of the relationship between autophagy and virus entry. The quantum‐dot‐based single‐virus tracking is proven to hold promise for autophagy‐related fundamental research.  相似文献   

8.
Dengue, the most common mosquito-borne viral infection of humans, is endemic across much of the world, including much of tropical Asia and is increasing in its geographical range. Here, we present a mathematical model of dengue virus dynamics within infected individuals, detailing the interaction between virus and a simple immune response. We fit this model to measurements of plasma viral titre from cases of primary and secondary DENV 1 infection in Vietnam. We show that variation in model parameters governing the immune response is sufficient to create the observed variation in virus dynamics between individuals. Estimating model parameter values, we find parameter differences between primary and secondary cases consistent with the theory of antibody-dependent enhancement (namely enhanced rates of viral entry to target cells in secondary cases). Finally, we use our model to examine the potential impact of an antiviral drug on the within-host dynamics of dengue. We conclude that the impact of antiviral therapy on virus dynamics is likely to be limited if therapy is only started at the onset of symptoms, owing to the typically late stage of viral pathogenesis reached by the time symptoms are manifested and thus treatment is started.  相似文献   

9.
Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive, and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. This study presents the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label‐free size‐based point‐of‐care virus capture in a continuous curved flow design. The pSiNW forests with specific interwire spacing are synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, this study demonstrates that about 50% H5N2 avian influenza viruses are physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self‐degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 h for virus culture, subsequent molecular diagnosis, and other virus characterization and analyses. This device performs viable, unbiased, and label‐free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development.  相似文献   

10.
Recent studies have shown that NP (nucleoprotein), which possesses multiple functions in the viral life cycle, is a new potential anti-influenza drug target. NP inhibitors reliably induce conformational changes in NPs, and these changes may confer inhibition of the influenza virus. The six conserved tryptophan residues in NP can be used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residues in the protein upon binding to an NP inhibitor. In the present study, we found that the fluorescence of recombinant NP proteins was quenched following the binding of available NP inhibitors (such as nucleozin) in a concentration- and time-dependent manner, which suggests that the inhibitor induced conformational changes in the NPs. The minimal fluorescence-quenching effect and weak binding constant of nucleozin to the swine-origin influenza virus H1N1pdm09 (SOIV) NP revealed that the SOIV is resistant to nucleozin. We have used the fluorescence-quenching property of tryptophans in NPs that were bound to ligands in a 96-well-plate-based drug screen to assess the ability of promising small molecules to interact with NPs and have identified one new anti-influenza drug, CSV0C001018, with a high SI value. This convenient method for drug screening may facilitate the development of antiviral drugs that target viruses other than the influenza virus, such as HIV and HBV.  相似文献   

11.
In the event of an influenza pandemic, the most probable way in which the virus would be introduced to an isolated geographical area is by an infected traveller. We use a mathematical model, structured on the location at which infection occurs and based on published parameters for influenza, to describe an epidemic in a community of one million people. The model is then modified to reflect a variety of control strategies based on social distancing measures, targeted antiviral treatment and antiviral prophylaxis and home quarantine, and the effectiveness of the strategies is compared. The results suggest that the only single strategy that would be successful in preventing an epidemic (with R0=2.0) is targeted antiviral treatment and prophylaxis, and that closing schools combined with either closing work places or home quarantine would only prevent such an epidemic if these strategies were combined with a modest level of antiviral coverage.  相似文献   

12.
Phosphatidylserine (PS) and monosialotetrahexosylganglioside (GM1) are examples of two host‐derived lipids in the membrane of enveloped virus particles that are known to contribute to virus attachment, uptake, and ultimately dissemination. A quantitative characterization of their contribution to the functionality of the virus requires information about their relative concentrations in the viral membrane. Here, a gold nanoparticle (NP) binding assay for probing relative PS and GM1 lipid concentrations in the outer leaflet of different HIV‐1 and Ebola virus‐like particles (VLPs) using sample sizes of less than 3 × 106 particles is introduced. The assay evaluates both scattering intensity and resonance wavelength, and determines relative NP densities through plasmon coupling as a measure for the target lipid concentrations in the NP‐labeled VLP membrane. A correlation of the optical observables with absolute lipid contents is achieved by calibration of the plasmon coupling‐based methodology with unilamellar liposomes of known PS or GM1 concentration. The performed studies reveal significant differences in the membrane of VLPs that assemble at different intracellular sites and pave the way to an optical quantification of lipid concentration in virus particles at physiological titers.  相似文献   

13.
A significant fraction of seasonal and in particular pandemic influenza deaths are attributed to secondary bacterial infections. In animal models, influenza virus predisposes hosts to severe infection with both Streptococcus pneumoniae and Staphylococcus aureus. Despite its importance, the mechanistic nature of the interaction between influenza and pneumococci, its dependence on the timing and sequence of infections as well as the clinical and epidemiological consequences remain unclear. We explore an immune-mediated model of the viral–bacterial interaction that quantifies the timing and the intensity of the interaction. Taking advantage of the wealth of knowledge gained from animal models, and the quantitative understanding of the kinetics of pathogen-specific immunological dynamics, we formulate a mathematical model for immune-mediated interaction between influenza virus and S. pneumoniae in the lungs. We use the model to examine the pathogenic effect of inoculum size and timing of pneumococcal invasion relative to influenza infection, as well as the efficacy of antivirals in preventing severe pneumococcal disease. We find that our model is able to capture the key features of the interaction observed in animal experiments. The model predicts that introduction of pneumococcal bacteria during a 4–6 day window following influenza infection results in invasive pneumonia at significantly lower inoculum size than in hosts not infected with influenza. Furthermore, we find that antiviral treatment administered later than 4 days after influenza infection was not able to prevent invasive pneumococcal disease. This work provides a quantitative framework to study interactions between influenza and pneumococci and has the potential to accurately quantify the interactions. Such quantitative understanding can form a basis for effective clinical care, public health policies and pandemic preparedness.  相似文献   

14.
This research is devoted to the development and optimization of fine purification processes realized on short monolithic columns (CIM disks), using influenza vaccine and viruslike synthetic particles as model objects. The pseudoaffinity mode of liquid chromatography has been used as a tool for dynamic adsorption experiments. Viruslike particles, close to the dimensions of influenza viruses, were developed by means of main antigen of influenza viruses (hemeagglutinin) covalent binding to the outer aminated surface of synthetic latex particles. The natural receptor analogues of sialic acid were used as affinity ligands immobilized on the surface of the CIM disk by different ways to achieve a high adsorption capacity. Also, some other ligands were tested as possible candidates for virus capturing. The affinity binding parameters for influenza A virus were obtained by frontal elution method at optimized chromatographic conditions and immobilization schemes. The experimental data pointed out the possibility of selective isolation of hemeagglutinin from a mixture of vaccine proteins. The results obtained by fast affinity chromatography have shown functional and sterical correspondence viruslike synthetic models to influenza viruses. Additionally, the optimization of chromatographic conditions allowed isolation of influenza virus A while maintaining its virulence. The maximum value of adsorption capacity was registered for a monolithic disk, modified subsequently by chitosan and 2,6-sialyllactose and found to be equal to 6.9 x 10(12) virions/mL support.  相似文献   

15.
Human respiratory tract epithelial cells are the portals of human infection with influenza viruses. However, the infection pathway of individual avian influenza viruses in human respiratory cells remains poorly reported so far. The single‐particle tracking technique (SPT) is a powerful tool for studying the transport mechanism of biomolecules in live cells. In this work, we use quantum dots to label avian influenza H9N2 virus and elaborate on the infection mechanism of the virus in human bronchial epithelial (HBE) cells using a three‐dimensional SPT technique. We have found that the H9N2 virus can infect HBE cells directly and the virus infection follows an actin filament‐ and microtubule‐dependent process with a three‐stage pattern. The transport behaviors show a high degree of consistency between the sialic acid receptors and the influenza virus. Real‐time SPT provides dynamic evidence of the sialic acid receptors‐related infection behavior of the avian influenza virus in live cells. The study of the influence of sialic acid receptors on virus infection may contribute to a better understanding of the cross‐species transmission of the avian influenza virus.  相似文献   

16.
No other virus after the outbreak of the influenza pandemic of 1918 affected the world’s population as hard as the coronavirus SARS-CoV-2. The identification of effective agents/materials to prevent or treat COVID-19 caused by SARS-CoV-2 is an urgent global need. This review aims to survey novel strategies based on inorganic polyphosphate (polyP), a biologically formed but also synthetically available polyanionic polymeric material, which has the potential of being a potent inhibitor of the SARS-CoV-2 virus-cell-docking machinery. This virus attaches to the host cell surface receptor ACE2 with its receptor binding domain (RBD), which is present at the tips of the viral envelope spike proteins. On the surface of the RBD an unusually conserved cationic groove is exposed, which is composed of basic amino acids (Arg, Lys, and His). This pattern of cationic amino acids, the cationic groove, matches spatially with the anionic polymeric material, with polyP, allowing an electrostatic interaction. In consequence, the interaction between the RBD and ACE2 is potently blocked. PolyP is a physiological inorganic polymer, synthesized by cells and especially enriched in the blood platelets, which releases metabolically useful energy through enzymatic degradation and coupled ADP/ATP formation. In addition, this material upregulates the steady-state-expression of the mucin genes in the epithelial cells. We propose that polyP, with its two antiviral properties (blocking the binding of the virus to the cells and reinforcing the defense barrier against infiltration of the virus) has the potential to be a novel protective/therapeutic anti-COVID-19 agent.  相似文献   

17.
Seasonal emerging infectious diseases such as influenza A impose substantial risk and need new translational strategies to achieve active immunomodulation. Here, a novel injectable pathogen‐mimicking hydrogel (iPMH) that can enhance both cellular and humoral immune responses is suggested. By the help of poly(γ‐glutamic acid) that has abundant carboxylate groups and dispersion helper function, hydrophobic immunostimulatory 3‐O‐desacyl‐4′‐monophosphoryl lipid A (MPLA) molecules and viral antigens (PR8, W150) can be successfully combined as pathogen‐mimicking adjuvants. Polyelectrolyte complex between the poly(γ‐glutamic acid)‐based adjuvants and collagens generate in situ gel‐forming hydrogel at physiological temperature. When the iPMH are immunized, they act as a pathogen‐mimicking (MPLA, H1N1, H5N1) immune priming center and a depot for continuous stimulation of immune system, resulting in the induction of high levels (8.5 times higher) of antigen‐specific IgG titers in the sera of mice and the increased number of IFN‐γ‐producing cells (7.3 times higher) compared with those in the groups immunized with antigen plus clinically used aluminum gels. Following the intranasal infection of the mouse adapted virus (emerging infectious 2009 H1N1 and highly pathogenic 2006 H5N1) at 50 times the 50% lethal dose, the mice immunized with viral antigens plus iPMH exhibit 100% protective immunity against lethal virus challenge.  相似文献   

18.
Experimental design and analysis is an effective and commonly used tool in scientific investigations and industrial applications. Many successful applications have been reported in engineering domains, such as chemical engineering, electrical engineering, and mechanical engineering. However, few cases have been reported in biological research, particularly in virology study. Antiviral drug combinations are increasingly used to reduce possible drug‐resistant viral mutant and reduce cytotoxicity. Drug combinations have often been reported to have higher efficacy and lower individual drug dosage. However, the combined antiviral drug effect is generally hard to assess. One important reason is due to the complex interactions between biological systems and drug molecules. We report a study using fractional factorial designs to investigate a biological system with Herpes simplex virus type 1 and five antiviral drugs. The experiment uses a novel composite design that consists of a 16‐run fractional factorial design and an 18‐run orthogonal array. The results indicate that two chemical drugs, Ribavirin and Acyclovir, are more effective than three Interferon drugs. Furthermore, significant interactions exist within the Interferon drug group and within the Ribavirin‐Acyclovir chemical drug group, but the interactions between the Interferon group and the chemical group are not significant. These observations have major implications in the understanding of antiviral drug mechanism towards better design of combinatorial antiviral drug therapy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper explores the application potential of a biodegradable PLLA/chitosan electrospun composite membrane for guided periodontal tissue regeneration which in addition serves as a fibroblast barrier. Electrospinning was applied to fabricate the PLLA membrane and aminolysis method was applied to graft chitosan on its surface. The morphology of the PLLA/chitosan membrane was observed by SEM. The surface chemical composition was analyzed by XPS. The appearance of N 1s peak in XPS demonstrated the successful grafting of chitosan on the PLLA electrospin membrane. After the modification, the water contact angle decreased from 136.9 ± 2.18° to 117.0 ± 2.10°, representing an improved hydrophilicity of the membrane. The bioactivity of the membrane was analyzed by XPS after soaking in SBF. The deposits had a Ca/P ratio of 1.6, indicating the hydroxyapatite formation on PLLA/chitosan membrane. The degradation rate was determined by measuring mass loss after immersion in PBS at different time periods. Compared to pure PLLA electrospun membrane which was almost non-degradable, the degradation rate of PLLA/chitosan composite membrane was up to 20 % in 6 weeks while maintaining its basic architecture to keep supporting the regenerated tissue. Live–dead cell staining of MC3T3 E1 cells cultured on the surface of the membrane showed a good biocompatibility of the PLLA/chitosan membrane. Furthermore, fibroblast cell line NIH 3T3 was cultured on surface of the membrane for the evaluation of cell penetration. The result demonstrated that the membrane worked as a fibroblast barrier to minimize the unfavorable effect of fibroblasts on periodontal tissue regeneration. Therefore, this electrospun PLLA/chitosan composite membrane has more potential for clinical application compared to old generation regeneration membrane with both suitable degradation rate and non-fibroblast penetration property.  相似文献   

20.
The 1976 outbreak of A/New Jersey/76 influenza in Fort Dix is a rare example of an influenza virus with documented human to human transmission that failed to spread widely. Despite extensive epidemiological investigation, no attempt has been made to quantify the transmissibility of this virus. The World Health Organization and the United States Government view containment of emerging influenza strains as central to combating pandemic influenza. Computational models predict that it may be possible to contain an emergent pandemic influenza if virus transmissibility is low. The A/New Jersey/76 outbreak at the United States Army Training Center at Fort Dix, New Jersey in January 1976 caused 13 hospitalizations, 1 death and an estimated 230 cases. To characterize viral transmission in this epidemic, we estimated the basic reproductive number and serial interval using deterministic epidemic models and stochastic simulations. We estimated the basic reproductive number for this outbreak to be 1.2 (supported interval 1.1-1.4), the serial interval to be 1.9 days (supported interval 1.6-3.8 days), and that the virus had at least six serial human to human transmissions. This places the transmissibility of A/New Jersey/76 virus at the lower end of circulating flu strains, well below the threshold for control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号