首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Golden bristlegrass‐like unique nanostructures comprising reduced graphene oxide (rGO) matrixed nanofibers entangled with bamboo‐like N‐doped carbon nanotubes (CNTs) containing CoSe2 nanocrystals at each node (denoted as N‐CNT/rGO/CoSe2 NF) are designed as anodes for high‐rate sodium‐ion batteries (SIBs). Bamboo‐like N‐doped CNTs (N‐CNTs) are successfully generated on the rGO matrixed nanofiber surface, between rGO sheets and mesopores, and interconnected chemically with homogeneously distributed rGO sheets. The defects in the N‐CNTs formed by a simple etching process allow the complete phase conversion of Co into CoSe2 through the efficient penetration of H2Se gas inside the CNT walls. The N‐CNTs bridge the vertical defects for electron transfer in the rGO sheet layers and increase the distance between the rGO sheets during cycles. The discharge capacity of N‐CNT/rGO/CoSe2 NF after the 10 000th cycle at an extremely high current density of 10 A g?1 is 264 mA h g?1, and the capacity retention measured at the 100th cycle is 89%. N‐CNT/rGO/CoSe2 NF has final discharge capacities of 395, 363, 328, 304, 283, 263, 246, 223, 197, 171, and 151 mA h g?1 at current densities of 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 A g?1, respectively.  相似文献   

2.
The hydrothermal synthesis of colorless crystals of Zn(O3PCH3) was achieved using a solution of zinc nitrate and methylphosphonic acid (1:1) in water, in the presence of thiourea. The structure was determined by single crystal X-ray diffraction [monoclinic, space group P21/c (No. 14), a=8.7226(9) Å, b=5.2156(7) Å, c=10.847(1) Å, V=389.48(9) Å3, Z=2]. From this result, the mechanism of the structure modification taking place during the dehydration of Zn(O3PR)–H2O phosphonates was clearly demonstrated.  相似文献   

3.
Carbon nanotubes (CNTs), which are one-dimensional (1D) molecular conductors, have attracted considerable attention. However, none of the research has reported on superconductivity (SC) in carrier-doped CNTs. Here, we report on SC with the world??s highest transition temperature (T c) of 12 K in highly uniform thin films of boron-doped single-walled CNTs (B-SWNTs). We clarify correlation of SC with Fermi level tuning with van Hove singularities (VHS) in electronic density of states (DOS) in the SWNT. Moreover, we show fabrication of paper-like thin films consisting of a pseudo two-dimensional network of weakly coupled B-SWNTs (called the Buckypaper) and show an enhancement of the onset T c up to 19 K by applying only a small pressure. The present observations will shed light on the high feasibility of using CNTs as a 1D superconductor and also on the research of 1D electron correlation.  相似文献   

4.
Results of an experimental study of explosive crystallization appearing in the process of formation of a Se/Ag nanosize film structure are presented. It is shown that explosive crystallization appears in a wide range of Se film thicknesses (70–280 nm) and occurs during a narrow time interval (2.00–4.52 s). The cooperative effect of the thermal energy of the phase transformation of Ag2Se and the energy of elastic stress in the amorphous Se film leads to development of an explosive crystallization. It was found that, depending on the relative thicknesses of Se and Ag films, orthorhombic Ag2Se with crystal-lattice constants a = 4.333 Å, b = 7.062 Å, and c = 7.764 Å and hexagonal Se (a = 4.3552 Å and c = 4.9495 Å) are formed in the reaction products upon the explosive crystallization.  相似文献   

5.
X-ray diffraction data are presented for combustion products in the Al-W-N system. New, nonequilibrium intermetallic compounds have been identified, their diffraction patterns have been indexed, and their unit-cell parameters have been determined. The phases α-and β-WAl4 are shown to exist in three isomorphous forms, differing in unit-cell centering. The phases α′-, α″-, and α?-WAl4 are monoclinic, with a 0 = 5.272 Å, b 0 = 17.770 Å, c 0 = 5.218 Å, β = 100.10°; point groups C12/c1, A12/n1, I12/a1, respectively. The phases β′-, β″-, and β?-WAl4 are monoclinic, with a 0 = 5.465 Å, b 0 = 12.814 Å, c 0 = 5.428 Å, β = 105.92°; point groups A112/m, B112/m, I112/m, respectively. The compounds WAl2 and W3Al7, identified each in two isomorphous forms, differ in cell metrics (doubling) but possess the same point group: P222. WAl 2 : orthorhombic, a 0 = 5.793 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. WAl 2 : orthorhombic, a 0 = 11.586 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 6.225 Å, b 0 = 4.806 Å, c 0 = 4.437 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 12.500 Å, b 0 = 4.806 Å, c 0 = 8.874 Å. The new phase WAl3: triclinic, P1, a 0 = 8.642 Å, b 0 = 10.872 Å, c 0 = 5.478 Å, α = 104.02°, β = 64.90°, γ = 107.15°.  相似文献   

6.
Samples of the quaternary chalcogenide compounds, CuNiGaSe3 and CuNiInSe3, prepared by direct fusion and annealing method, were characterized by X-ray powder diffraction. In each case, the crystal structure was refined using the Rietveld method. Both compounds were found to crystallize in the tetragonal system, space group P \(\bar 4\)2c (N°112), with unit cell parameter values a = 5.6213(1) Å, c = 11.0282(3) Å, V = 348.48(1) Å3 and a = 5.7857(2) Å, c = 11.6287(5) Å, V = 389.26(3) Å3 for CuNiGaSe3 and CuNiInSe3, respectively. These compounds have a normal adamantane structures and are isostructural with CuFeInSe3.  相似文献   

7.
《Materials Letters》2005,59(2-3):313-318
The crystal structures of the two ternary compounds, Ba4CaCu3O8+δ and Ba6CaCu3O10+δ, have been investigated by means of X-ray diffraction combined with Rietveld analysis. We found that the Ba4CaCu3O8+δ phase has a cubic structure (Im–3m, a=8.1515(1) Å, δ=+0.8) for high oxygen content as reported in the literature but undergoes a transformation into a tetragonal structure (I4/mmm, a=8.1888(1) Å, c=8.0634(1) Å for δ=−0.3) when the oxygen content is lowered. The crystal structure of Ba6CaCu3O10+δ (I4/mmm, a=4.0463(1) Å, c=21.7322(4) Å for δ=+0.2) is confirmed. Changes in the c value with sintering conditions suggest a variable oxygen content with no structure transformation.  相似文献   

8.
Single crystals of Y2Cu2O5 were obtained in the flux growth process by controlled heating of a mixture of Y2O3, BaO, and CuO in a molar ratio of 1∶8∶20. These crystals were analyzed by a single-crystal X-ray diffraction analysis. The crystal contains polymeric chains of Cu2O5 interspersed by yttrium ions surrounded by octahedral arrangements of oxygen atoms. Crystal data: space group=Pna21,a=10.799(2) Å,b=3.4990(5) Å,c=12.459(2) Å,Z=4, 380 reflections,R=0.026,R w=0.030.  相似文献   

9.
Small‐angle neutron scattering (SANS) and diffusion NMR studies are performed to investigate the stability and geometry of hydrogen‐bonded pyrene‐guest‐containing C‐hexylpyrogallol[4]arene (PgC6‐pyrene) nanotubular frameworks in solution. In the solid state, hydrogen‐bonded pyrogallol[4]arene tubes are formed; however, the scattering data for PgC6‐pyrene assemblies in acetone are best modeled as dimeric spheres of PgC6 with no pyrene guest. The result of diffusion NMR study also indicates the rearrangement of tubular entity into spherical framework in acetone. This is the first example of structural transformation of pyrogallol[4]arene nanotubes (guest‐exo) in solution. Individual hydrogen‐bonded spheres of PgC6 exhibits a uniform radius of ca. 8.6 Å and a diffusion coefficient of 9.12 × 10?10 m2 s?1 in acetone. The diffusion NMR measurements further gave, for the first time, insights into how the type of solvent (acetone vs. methanol vs. acetontitrile/D2O) governs the structural differences in these nanoassemblies. Solution‐phase structural alteration observed for PgC6‐pyrene gives evidence of enhanced stability of pyrogallol[4]arene nanocapsules over nanotubes.  相似文献   

10.
A new potassium iron (III) pyrophosphate was synthesized by hydrothermal technique and characterized by X-ray studies. The compound crystallizes in a monoclinic space group,P2 1/c, with cell parameters,a = 7 365(2) Å,b = 10017(2) Å,c = 8.214(1) Å,β = 106.50(1)° andZ = 4. The structure has tunnel-type cavities and are congenial for ion transportation through them. The compound exhibits moderate thermal stability.  相似文献   

11.
Carbon nanotubes (CNTs) are promising materials because of their unique properties. However, the poor solubility in solvents limits the function of CNTs and hinders their applications in many fields. Surface modification of CNTs with polymers is an efficient method to solve this problem. Several polymers were tested for the preparation of CNT dispersions. In comparison with organic polymers, poly(organophosphazenes) are highly stable macromolecules with adjustable properties which depend on the side groups. This article is to describe the synthesis of thermally stable and soluble multi-walled CNT/poly(organophosphazene) composites. The poly(organophosphazene)s substituted with (a) 100 % quaternary protonated pyridinoxy (PPY), (b) 50 % quaternary protonated pyridinoxy and 50 % a long aliphatic chain alcohol (1-dodecanol) (PDK), and (c) 50 % quaternary protonated pyridinoxy and 50 % a glycol ether [(2-(2-methoxyethoxy)ethanol] (PET) have been synthesized. f-MWCNT/poly(organophosphazene) composites have been prepared by the treatment of the functionalized multi-walled carbon nanotubes (f-MWCNT) with the protonated polyphosphazenes (PPY, PDK, and PET) using different feed ratios [R feed = 1:1, 1:3, 1:5, 1:10 (w:w)]. The thermal stability of prepared composites (f-MWCNT/PPY, f-MWCNT/PDK, and f-MWCNT/PET) have been investigated by TGA. By considering thermal stabilities and solubility of all prepared composites, f-MWCNT/PPY1:5, f-MWCNT/PDK1:5, and f-MWCNT/PET1:5 have been chosen as optimum composite composition and characterized by 31P NMR, 1H NMR, XRD, Raman spectroscopy, and EDX analysis. The morphologic characterizations of the f-MWCNT/PPY1:5, f-MWCNT/PDK1:5, f-MWCNT/PET1:5 nanocomposites have been carried out by HRTEM. Excellent dispersions of the nanocomposites in water and common organic solvents have been achieved. The solubility and thermal stability of nanocomposites depend on the side groups on poly(organophosphazene).  相似文献   

12.
Carbon nanotubes (CNTs) have been suggested as suitable materials for biomedical applications, especially in the neural area. It is essential not only to investigate the biocompatibility of CNTs with the neural system but also to determine proper methods for applying CNTs to neuronal growth. This work represents the first application of CNTs by electrospun poly(D ,L ‐lactic‐co‐glycolic acid) (PLGA) scaffolds for a neural system. We synthesized electrospun nanocomposites of PLGA and single‐walled carbon nanotubes functionalized by carboxylic acid groups (c‐SWNTs), and investigated neurite outgrowth from SH‐SY5Y cells on these nanocomposites as compared to that on fibrous PLGA alone. Cells on our PLGA/c‐SWNT nanocomposite showed significantly enhanced mitochondrial function and neurite outgrowth compared to cells on PLGA alone. We concluded that c‐SWNTs incorporated into fibrous PLGA scaffolds exerted a positive role on the health of neural cells.  相似文献   

13.
Two copper diphosphonates were hydrothermally synthesized using ethylenediphosphonic and p-xylenediphosphonic acids, synthesized according the Arbuzov method. The structure of (CuII(H2O))2{O3P–CH2–CH2–PO3} already described from powder data, was solved from single crystal data. Its symmetry is monoclinic (space group P21/c (no. 14)) with lattice parameters a=8.0670(4) Å, b=7.5889(4) Å, c=7.3997(4) Å, β=116.281(2)°, V=406.18(4) Å3, Z=2. The structure of (CuII(H2O))2{O3P–CH2–(C6H4)–CH2–PO3} was solved by powder X-ray diffraction (space group P21/c (no. 14)) with lattice parameters a=10.812(1) Å, b=7.577(1) Å, c=7.412(1) Å, β=92.34(1)°, V=606.7(2) Å3, Z=2. Both structures are built up from identical inorganic layers covalently linked by the organic chains which act as pillars. The inorganic layers contain dimers of edge-sharing CuO4(H2O) square pyramids linked by the PO3C tetrahedra. Both compounds are antiferromagnetic at 4(1) K.  相似文献   

14.
As water molecules permeate ultrafast through carbon nanotubes (CNTs), many studies have prepared CNTs‐based membranes for water purification as well as desalination, particularly focusing on high flux membranes. Among them, vertically aligned CNTs membranes with ultrahigh water flux have been successfully demonstrated for fundamental studies, but they lack scalability for bulk production and sufficiently high salt rejection. CNTs embedded in polymeric desalination membranes, i.e., polyamide thin‐film composite (TFC) membranes, can improve water flux without any loss of salt rejection. This improved flux is achieved by enhancing the dispersion properties of CNTs in diamine aqueous solution and also by using cap‐opened CNTs. Hydrophilic CNTs were prepared by wrapping CNT walls via bio‐inspired surface modification using dopamine solution. Cap‐opening of pristine CNTs is performed by using a thermo‐oxidative process. As a result, hydrophilic, cap‐opened CNTs‐embedded polyamide TFC membranes are successfully prepared, which show much higher water flux than pristine polyamide TFC membrane. On the other hand, less‐disperse, less cap‐opened CNTs‐embedded TFC membranes do not show any flux improvement and rather lead to lower salt rejection properties.  相似文献   

15.
SrBi3Ti2NbO12 and PbBi3Ti2NbO12 ceramics were prepared by hot pressing. Both oxides were found to have a layered perovskite-like structure(a = b = 3.850 Å,c = 33.21 Å in the former anda = b = 3.865 Å,c = 33.52 Å in the latter) and undergo ferroelectric phase transitions at Tc = 441 and 570 K, respectively. The dielectric constants of the ceramics are, respectively, 440 and 217 at room temperature and 600 and 870 at Tc.  相似文献   

16.
Atmospheric plasma spraying was carried out to deposit a bilayered NiCrAlY/nTiO2-CNT composite coating. Initially, NiCrAlY, as an under-layer with a thickness of around 100?µm, was deposited. Afterwards, nanostructured TiO2 (nTiO2), as an over-layer with a thickness of 135?μm, was deposited with and without the incorporation of carbon nanotubes (CNTs) on the Mg alloy surface. In contrast to NiCrAlY and NiCrAlY/nTiO2, the NiCrAlY/nTiO2-CNT nanocomposite coating displayed a higher bonding strength. The wear behaviour of the coatings was examined by the pin-on-disc test and the results revealed that the incorporation of CNTs into the nTiO2 coating considerably enhanced the tribological behaviour of Mg alloy due to the CNT’s bridging mechanism.  相似文献   

17.
Phase transitions of the GeX2 (X = S, Se) dichalcogenides have been studied at pressures of up to p ? 8 GPa and temperatures from 675 to 1375 K, and portions of their p-T phase diagrams have been constructed using our and previous experimental data. The crystal structure of the GeS2-III phase has been refined by the Rietveld method (HgI2 structure, P42/nmc, a = 3.46906(2) Å, c = 10.9745(1) Å, Z = 2, D x = 3.438 g/cm3, R = 0.06). GeSe2-III crystals have been grown for the first time at p ? 7 GPa in the temperature range 875–1275 K. The unit-cell parameters of GeSe2-III (hex) are a = 6.468 ± 0.004 Å and c = 24.49 ± 0.10 Å (D meas = 5.16 g/cm3, D x = 5.18 g/cm3, Z = 12).  相似文献   

18.
Single crystals of four Ln2TiO5 polymorphs have been grown, and their structures have been determined: orthorhombic (Gd2TiO5, a = 10.460(5), b = 11.317(6), c = 3.750(3) Å, Pnam, Z = 4), hexagonal (Gd1.8Lu0.2TiO5, a = 3.663(3), c = 11.98(1) Å, P63/mmc, Z = 1.2), cubic (Dy2TiO5, a = 10.28(1) Å, Fd3m, Z = 10.4), and monoclinic (Dy2TiO5, a = 10.33(1), b = 3.653(5), c = 7.306(6) Å, β = 90.00(7)°, B2/m, Z = 2.4). The last polymorph has been identified for the first time.  相似文献   

19.
《Materials Research Bulletin》2004,39(7-8):1091-1101
RWO3N oxynitrides were isolated as single phases for R=Nd and Pr, after thermal ammonolysis of reactive precursors prepared using the citrate complexation/calcination route. Both stoichiometric compounds crystallize with a scheelite-type tetragonal unit cell, with a=5.2821(3) Å, c=11.5893(8) Å (NdWO3N) and a=5.299(3) Å, c=11.631(9) Å (PrWO3N). Neutron diffraction experiments performed on the Nd-phase did not evidence any oxygen/nitrogen order within the scheelite anionic subnetwork (space group: I41/a). (Nd,A)W(O,N)4 (A=Ca, Sr) solid solution domains were identified between NdWO3N and the AWO4 oxide composition.  相似文献   

20.
The hydrothermal synthesis and the ab initio structure determination from powder data of K2(VVO2)4(VIVO){O3P–CH2–PO3}2xH2O (x=4) or MIL-33 are presented. MIL-33 crystallizes in the monoclinic system [space group C2/m (No. 12)] with lattice parameters a=4.8716(4) Å, b=14.614(1) Å, c=15.825(1) Å, β=94.06(1) Å, V=1123.8(2) Å3, Z=2. MIL-33 is a mixed valence VIV/VV=1/4 vanadodiphosphonate. Its layered structure shows some potassium cations located both between the hybrid layers and in the eight-membered windows of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号