首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
碳纳米管-碳纤维/水泥基材料微观结构和热电性能   总被引:3,自引:0,他引:3  
姚武  左俊卿  吴科如 《功能材料》2013,44(13):1924-1927,1931
研究了碳纳米管-碳纤维/水泥基材料的微观结构以及碳纳米管-碳纤维/水泥基材料升温与降温过程中的热电性能。实验结果表明,当水泥基材料中碳纳米管掺量较低时(碳纳米管掺量占水泥质量百分比不高于0.5%),碳纳米管能有效改善水泥基体性能,密实基体结构。在碳纤维水泥基材料中掺入碳纳米管能有效提高和改善复合材料热电性能;当碳纳米管掺量为水泥质量0.5%,水泥基材料热电势率最多能提高260%,达到22.6μV/℃。与此同时,碳纳米管掺入能增强热电效应中温差电动势与温差关系的线性规律和可逆性规律。  相似文献   

2.
贾兴文  吴洲  马英  汪宏涛 《功能材料》2013,(15):2166-2169
改善碳纤维增强水泥(CFRC)的压敏性有助于提高其感知应力应变的能力。采用两电极法研究了磁选粉煤灰部分取代水泥对CFRC压敏性的影响,分析了磁选粉煤灰掺量、铁氧化物含量等因素影响CFRC压敏性的规律及机理。结果表明,碳纤维质量掺量≤0.8%时,用铁氧化物含量达到30%的磁选粉煤灰取代20%~30%的水泥来制备CFRC时可以显著改善CFRC的压敏性;碳纤维质量掺量为1.2%时,掺加磁选粉煤灰不利于提高CFRC的压敏性;磁选粉煤灰对采用最大长度为3和5mm的碳纤维制备的CFRC的压敏性具有显著改善效果。掺加适量磁选粉煤灰使CFRC在碳纤维掺量较低时仍然可以获得良好压敏性,并显著降低CFRC的制备成本。  相似文献   

3.
为了探索三维石墨烯-碳纳米管(G-CNTs)/水泥净浆的压敏性能,采用四电极法研究了荷载作用下GCNTs/水泥净浆的电阻率变化,并分析不同G-CNTs掺量、加载幅度、加载速度以及恒定荷载对电阻率变化的影响。研究表明:随着G-CNTs掺量的增加,电阻率呈先减小后稳定的变化趋势,在G-CNTs掺量由0.2wt%增加至1.6wt%时,电阻率下降51.8%;电阻率与温度呈负相关;G-CNTs掺量高于0.8wt%时可以显著提高水泥净浆的压敏性能,且电阻率变化率与应力应变有明显的对应关系,1.2wt%G-CNTs掺量下试件的应力灵敏系数和应变灵敏系数分别为2.3%/MPa和291;G-CNTs/水泥净浆电阻率变化率幅值随着加载幅度增大而相应增加,其电阻率变化率曲线在不同加载速度以及恒定荷载作用下均与应力-应变曲线一一对应,具有良好的压敏特性。  相似文献   

4.
张琰  李相国  程永锋  刘华清 《材料导报》2017,31(Z2):410-412, 427
通过在水泥基材料中加入纳米二氧化硅和碳纳米管,设计了一种基于纳米改性的水泥基表面强化材料,研究了该水泥基表面强化材料的力学性能和抗裂性能。结果表明:随着纳米二氧化硅颗粒掺量的增加,表面强化材料的抗压强度先增大后减小,碳纳米管的加入能够显著提高表面强化材料的抗裂性能。2%纳米二氧化硅、0.1%碳纳米管掺量的表面强化材料性能最优。  相似文献   

5.
利用四电极法研究了内掺水泥基渗透结晶防水材料(CCCW)的碳纤维石墨水泥基复合材料试样(40 mm×40 mm×40 mm)的导电特性及其在循环荷载作用下的压阻特性,分析讨论了碳纤维石墨水泥砂浆的体积电阻率及压阻特性随石墨掺量的变化规律。碳纤维和CCCW的掺量分别为水泥质量的1%和4%;石墨掺量分别为水泥质量的0%、10%、20%、30%、40%和50%。结果表明,添加CCCW的碳纤维石墨砂浆试样的体积电阻率随石墨掺量的增加迅速下降,并存在渗滤现象,渗滤阈值为20%左右。在循环荷载作用下,不同石墨掺量试样的电阻和应力存在一定的对应关系。石墨掺量为水泥质量的20%~30%时,碳纤维石墨水泥砂浆试样的体积电阻率与压应力呈现良好的可重复性,电阻值在应力加载时几乎呈线性下降,而卸载时增加。  相似文献   

6.
研究了脱油沥青(De-oiled asphalt)基气相生长碳纤维(VGCFs)增强水泥基复合材料的制备方法及其性能。以脱油沥青作原料,采用化学气相沉积法(CVD)制备出气相生长碳纤维,以此纤维制备水泥基功能复合材料。结果表明:低含量VGCFs的碳纤维增强水泥基复合材料具有良好的抗压强度和导电性能,在VGCFs的掺量由0增至0.6 %范围内,随着VGCFs掺量的增加,碳纤维增强水泥基复合材料的电阻率下降,抗压强度提高。当VGCFs为0.4 %时,VGCFs水泥基复合材料电阻率降低2个数量级,从3.25 ×105 Ω·cm 降为1.49 ×103 Ω· cm ,抗压强度提高28.8 %,为最佳掺量。   相似文献   

7.
导电掺和料形态与水泥基材料压敏性的相关性   总被引:5,自引:2,他引:3       下载免费PDF全文
研究了含有碳纤维、石墨、钢纤维的水泥基材料的导电性及其在压应力作用下电阻率的变化规律;探讨了掺有导电掺合料的水泥石电阻率的变化机理。研究表明,水泥基材料具备压敏效应的前提条件是其导电网络达到渗流区,而碳纤维由于长径比大、密度小,极小掺量即可使水泥石进入渗流区,产生压敏效应。   相似文献   

8.
通过多孔氧化铝模板交流电沉积的方法制备了镍纳米线,以镍纳米线为导电填料、聚羧酸减水剂为分散剂,首次制备了新型的自感知镍纳米线/水泥基复合材料。通过SEM、TEM和XRD测试方法,研究了镍纳米线与镍纳米线水泥基复合材料的显微结构,与此同时,用四电极伏安法研究了镍纳米线水泥基复合材料的渗流阈值和压敏性。结果显示:所得的镍纳米线直径约为65 nm,长径比约为50;聚羧酸型减水剂能有效提高镍纳米线的分散性;水泥基复合材料的电阻率随镍纳米线的掺量增加呈现渗流特性,渗流阈值为0.5vol%;掺加1.0vol%镍纳米线的水泥基复合材料的应变灵敏度系数高达509.2,远高于电阻应变片的2.0,适用于混凝土结构应力监测的传感元件。  相似文献   

9.
熊国宣  张志宾  邓敏 《功能材料》2011,42(1):67-69,73
以石墨、炭黑、碳纤维和纳米碳管等为屏蔽介质,采用不同的方法分散碳系屏蔽介质,然后掺入到水泥材料中制得水泥基复合屏蔽材料,研究了普通碳系屏蔽介质对屏蔽性能的影响及碳纤维和碳纳米管掺量的变化与屏蔽效能之间的关系;利用四探针测试仪、电子探针等手段表征了复合材料的电导率和屏蔽介质的分散均匀性.结果表明,掺碳纤维的水泥基复合材料...  相似文献   

10.
孙亚颇 《功能材料》2023,(1):1115-1119
以普通硅酸盐水泥P.O 42.5为基体材料,不同掺杂量(0,0.4%,0.8%和1.2%(质量分数))的纳米碳纤维为增强相,制备了纳米碳纤维增韧水泥基复合材料,研究了纳米碳纤维的掺杂量对水泥基复合材料晶体结构、力学性能和耐久性能的影响。结果表明,纳米碳纤维的掺杂在水泥基复合材料中未出现新的水化产物,但加速了水化反应的进行;纳米碳纤维的“连接”作用使水泥基复合材料的孔结构变得致密,裂纹和孔隙减少;随着纳米碳纤维掺杂量的增加,水泥基复合材料的抗压强度和抗折强度先增大后减小,当纳米碳纤维的掺杂量为0.8%(质量分数)时,水泥基复合材料28 d的抗压强度和抗折强度均达到了最大值,分别为82.4和13.1MPa;采用单面盐冻法对水泥基复合材料进行抗冻性能测试,发现纳米碳纤维的掺杂改善了水泥基复合材料的抗冻性能,当纳米碳纤维的掺杂量为0.8%(质量分数)时,水泥基复合材料在28次冻融循环后单位面积质量损失量最小为0.114 kg/m2。综合力学性能和耐久性能分析可知,纳米碳纤维的最佳掺量为0.8%(质量分数)。  相似文献   

11.
This paper presents the design, fabrication, and characterization of a novel inclination-angle sensor (inclinometer) using heating and sensing elements based on conductive polydimethylsiloxane (PDMS) composited with carbon nanotubes (CNTs). The inclinometer consists of a PDMS cube-shaped chamber, a CNTs/PDMS composite-based heater, and four CNTs/PDMS composite-based temperature sensors. The working mechanism of this sensor is based on thermal convective sensing theory on the basis of the detection of thermal disturbance caused by inclination-induced convection in a sealed chamber. In order to prepare the conductive CNTs/PDMS composite, toluene was applied as a solvent to facilitate CNT dispersion in PDMS matrix and then was removed by evaporation. The resistive heating and thermal sensing properties of CNT/PDMS composite-based elements were tested and analyzed first. Then, the responses to inclination-angle were monitored and reported. Experimental results demonstrate that the inclinometer can measure dual-axis angular position in the range of 360° with high stability and repeatability.  相似文献   

12.
水泥基材料的收缩开裂已经成为其破坏的一个主要原因,受到国内外关注,碳纳米管(CNTs)作为一种纳米纤维状材料,可能可以抑制水泥基材料收缩。本文将CNTs放入水中,经过超声处理分散后,形成CNTs分散液,设置不同的CNTs掺量将其掺入到水泥基材料中,通过波纹管实验及圆环试验对该种新型复合材料的自收缩及抗裂性能进行研究。结果表明:CNTs的掺入可以很大程度上抑制水泥基材料的自收缩,最高降低率可到40%以上,且明显提高了水泥基材料的抗裂性能。水灰比的增加会提高CNTs对水泥基材料收缩的抑制效果。当CNTs的掺量为0.1wt%时,可以获得最优效果。同时,CNTs的掺入不仅对水泥基材料自收缩有抑制作用,一定程度上也会抑制水泥基材料的干燥收缩。通过将CNTs掺入到建筑结构关键部分的水泥基材料中,可以提高建筑安全系数。   相似文献   

13.
Hierarchically structured hybrid composites are ideal engineered materials to carry loads and stresses due to their high in-plane specific mechanical properties. Growing carbon nanotubes (CNTs) on the surface of high performance carbon fibres (CFs) provides a means to tailor the mechanical properties of the fibre–resin interface of a composite. The growth of CNT on CF was conducted via floating catalyst chemical vapor deposition (CVD). The mechanical properties of the resultant fibres, carbon nanotube (CNT) density and alignment morphology were shown to depend on the CNT growth temperature, growth time, carrier gas flow rate, catalyst amount, and atmospheric conditions within the CVD chamber. Carbon nanotube coated carbon fibre reinforced polypropylene (CNT-CF/PP) composites were fabricated and characterized. A combination of Halpin–Tsai equations, Voigt–Reuss model, rule of mixture and Krenchel approach were used in hierarchy to predict the mechanical properties of randomly oriented short fibre reinforced composite. A fractographic analysis was carried out in which the fibre orientation distribution has been analyzed on the composite fracture surfaces with Scanning Electron Microscope (SEM) and image processing software. Finally, the discrepancies between the predicted and experimental values are explained.  相似文献   

14.
Gas ionization sensors based on the field emission properties of the carbon nanotube/nickel (CNT/Ni) field emitters were first developed in this work. It is found that the breakdown electric field (E(b)) slightly decreases from 2.2 V/microm to 1.9 V/microm as the pressure of H2 gas increases from 0.5 Torr to 100 Torr. On the contrary, E(b) obviously increases from 2.9 V/microm to 6.5 V/microm as O2 gas pressure increases from 0.5 Torr to 100 Torr. This may be explained by the depression of the electron emission that caused by the adsorption of the O2 gas on the CNT emitters. The Raman spectra of the CNT/Ni emitters also show that more defects were generated on the CNTs after O2 gas sensing. The Joule heating effect under high current density as performing H2 sensing was also observed. These effects may contribute the pressure dependence on the breakdown electric field of the CNT/Ni gas ionization sensors.  相似文献   

15.
Multiwall carbon nanotube (CNT) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been successfully fabricated with melt blending. Two melt blending approaches of batch mixing and continuous extrusion have been used and the properties of the derived nanocomposites have been compared. The interaction of PMMA and CNTs, which is crucial to greatly improve the polymer properties, has been physically enhanced by adding a third party of poly(vinylidene fluoride) (PVDF) compatibilizer. It is found that the electrical threshold for both PMMA/CNT and PMMA/PVDF/CNT nanocomposites lies between 0.5 to 1 wt% of CNTs. The thermal and mechanical properties of the nanocomposites increase with CNTs and they are further increased by the addition of PVDF For 5 wt% CNT reinforced PMMA/PVDF/CNT nanocomposite, the onset of decomposition temperature is about 17 degrees C higher and elastic modulus is about 19.5% higher than those of neat PMMA. Rheological study also shows that the CNTs incorporated in the PMMA/PVDF/CNT nanocomposites act as physical cross-linkers.  相似文献   

16.
In the present study, we have fabricated a series of high temperature vulcanized silicone rubber (HTVSR)/carbon nanotubes (CNTs) nanocomposites with different CNT contents. The CNTs were pretreated by the chitosan salt before being incorporated into the HTVSR. The nanocomposites were then characterized in terms of morphological, thermal, mechanical and electrical properties. It was found that the chitosan salt pretreated CNTs dispersed uniformly within the HTVSR matrix, improving the thermal and mechanical properties of the HTVSR. The nanocomposites could remain conductive without losing inherent properties after 100 times of repeated stretching/release cycles by 100%, 200%, and even 300%. Moreover, the nanocomposites had good response to the compressed pressures. The results obtained from this study indicate that the fabricated nanocomposites are potential to be used in many electrical fields such as the conductive elastomer or the pressure sensor.  相似文献   

17.
A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.  相似文献   

18.
Carbon nanotube/silver (CNT/Ag) nanocomposites include CNT volume fraction up to 10?vol.% were prepared by chemical reduction in solution followed by spark plasma sintering. Multiwalled CNTs underwent surface modifications by acid treatments, the Fourier transform infrared spectroscopy data indicated several functional groups loaded on the CNT surface by acid functionalisation. The acid-treated CNTs were sensitised and activated. Silver was deposited on the surface of the activated CNTs by chemical reduction of alkaline silver nitrate solution at room temperature. The microstructures of the prepared CNT/Ag nanocomposite powders were investigated by high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy and X-ray powder diffraction analysis. The results indicated that the produced CNT/Ag nanocomposite powders have coated type morphology. The produced CNT/Ag nanocomposite powders were sintered by spark plasma sintering. It was observed from the microstructure investigations of the sintered materials by HRSEM that the CNTs were distributed in the silver matrix with good homogeneity. The hardness and the tensile properties of the produced CNT/Ag nanocomposites were measured. By increasing the volume fraction of CNTs in the silver matrix, the hardness values increased but the elongation values of the prepared CNT/Ag nanocomposites decreased. In addition, the tensile strength was increased by increasing the CNTs volume fraction up to 7.5?vol.%, but the sample composed of 10?vol.% CNT/Ag was fractured before yielding.  相似文献   

19.
Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. Recent advances in CNT manufacturing have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use. The high tensile properties of CNT composites can be exploited in tension-dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum (Al) rings were overwrapped with thermoset/CNT yarn, thermally cured under a vacuum bag, and their mechanical properties measured. Fabrication parameters such as CNT/resin ratio, tension applied during winding, and the number of CNT yarn layers were investigated to determine their effects on the mechanical performance of overwrapped Al rings. Mechanical properties of the CNT composite overwrapped Al rings (CCOARs) were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their performance relative to bare Al rings. The ultimate load carried by the composite overwrap in the CCOARs increased with increasing number of wraps. The wet winding process for the CCOAR fabrication improved load transfer compared to the dry winding process due to enhanced interfacial adhesion between the CNT yarn and the applied resin. Wet winding Al rings with CNT yarn/thermoset overwraps resulted in ∼11% increase in weight relative to the bare ring and increased the room temperature breaking load by over 200%.  相似文献   

20.
In this work, multi wall carbon nanotubes (MWCNTs) dispersed in a polymer matrix have been used to enhance the thermo-mechanical and toughness properties of the resulting nanocomposites. Dynamic mechanical analysis (DMA), tensile tests and single edge notch 3-point bending tests were performed on unfilled, 0.5 and 1 wt.% carbon nanotube (CNT)-filled epoxy to identify the effect of loading on the aforementioned properties. The effect of the dispersion conditions has been thoroughly investigated with regard to the CNT content, the sonication time and the total sonication energy input. The CNT dispersion conditions were of key importance for both the thermo-mechanical and toughness properties of the modified systems. Sonication duration of 1 h was the most effective for the storage modulus and glass transition temperature (Tg) enhancement for both 0.5 and 1 wt.% CNT loadings. The significant increase of the storage modulus and Tg under specific sonication conditions was associated with the improved dispersion and interfacial bonding between the CNTs and the epoxy matrix. Sonication energy was the influencing parameter for the toughness properties. Best results were obtained for 2 h of sonication and 50% sonication amplitude. It was suggested that this level of sonication allowed appropriate dispersion of the CNTs to the epoxy matrices without destroying the CNT’s structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号