首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high mechanical properties of single-polymer composites based on degradable non-derivatised cellulose, aka all-cellulose composites, have recently captured the attention of researchers. All-cellulose composites possess the intriguing combination of high strength and biodegradability. However, the biodegradation behaviour of all-cellulose composites has so far not been reported. In this work, soil burial experiments were carried out to compare the biodegradation behaviour of all-cellulose composites with conventional biocomposites in order to investigate the end-of-life disposal of this relatively new class of bio-based composite materials. All-cellulose composites are characterised by exceptional biodegradability with mass losses of up to 73% following a soil burial time of 70 days. An investigation of the mechanisms of biodegradation of all-cellulose composites is undertaken for the first time.  相似文献   

2.
The reinforcement effects of two nanofillers, i.e., multi-walled carbon nanotube (MWCNT) and vapor grown carbon fiber (VGCF), which are used at the interface of conventional CFRP laminates, and in epoxy bulk composites, have been investigated. When using the two nanofillers at the interface between two conventional CFRP sublaminates, the Mode-I interlaminar tensile strength and fracture toughness of CFRP laminates are improved significantly. The performance of VGCF is better than that of MWCNT in this case. For epoxy bulk composites, the two nanofillers play a similar role of good reinforcement in Young’s modulus and tensile strength. However, the Mode-I fracture toughness of epoxy/MWCNT is much better than that of epoxy/VGCF.  相似文献   

3.
Cross-ply polymer laminates reinforced by ultra-high molecular weight polyethylene (UHWMPE) fibers and tapes have been subjected to quasi-static indentation by a flat-bottomed, circular cross section punch and their penetration resistance and failure mechanisms investigated. Three fiber- and two tape-reinforced grades progressively failed during indentation via a series of unstable failure events accompanied by substantial load drops. This resulted in a ‘saw-tooth’ load versus indentation depth profile as the load increased with indentation depth after each failure event. The penetration behavior scaled with the ratio of the thickness of the remaining laminate to the diameter of the punch, and the indentation pressure scaled with the through thickness compressive strength. Failure occurred by ply rupture. The results are consistent with penetration governed by an indirect tension failure mechanism, and with experimental reports that tape-reinforced materials have a similar ballistic resistance to the higher tensile strength fiber-reinforced grades in rear-supported test conditions.  相似文献   

4.
All-cellulose composites are high performing green materials and solvent infusion processing makes their upscaled manufacturing possible. This study explored the use of aqueous 7 wt.% NaOH/12 wt.% urea solution as cost effective and environmentally friendly cellulose solvent for solvent infusion processing. A short dissolution time of 5 min led to all-cellulose composite laminates with a tensile strength of 114 ± 1.9 MPa and a Young’s modulus of 7.8 ± 0.5 GPa. A decrease of tensile strength and Young’s modulus with increasing dissolution time from 5 to 60 min was linked to changes in composite microstructure and fine structure of the reinforcing rayon fibres. It was shown that aqueous NaOH/urea solution is a promising alternative solvent, as it offers the advantages of shorter processing times and reduced solvent costs by 97%, while resulting in 25% stronger laminates, when compared to using ionic liquids.  相似文献   

5.
Laminates, composed of different papers and polypropylene (PP), were fabricated by a manual stacking and hot pressing. The laminates were characterized by mechanical testing and the results were compared to glass fiber reinforced PP. Furthermore, a detailed evaluation of the interfacial properties and the paper structures was carried out by means of data modeling via rule of mixtures (ROM), as well as electron microscope (SEM) analysis. For investigating the influence of the laminate’s composition on the water adsorption behavior, water diffusion coefficients were determined. As a result, laminates with a tensile modulus up to 6 GPa and a tensile strength of 80 MPa were obtained. The property changes of the papers upon processing were successfully modeled, revealing a significant increase of the paper’s mechanical properties after fiber embedding. In general, the obtained results indicate a high potential of paper as a suitable reinforcement material for low to middle strained applications.  相似文献   

6.
In this work, different types of paper were used for producing cellulose reinforced polypropylene composites with MAPP as a coupling agent. The samples were prepared by a film stacking method of the polymer and paper layers, followed by hot pressing in order to fabricate structural composite laminates. Virgin copy, filter and newspaper were used as reinforcements for producing composites with varying paper content. The influence of paper type and content on the mechanical and physical properties of the laminates was investigated and discussed in detail. Remarkable results for tensile and bending test were obtained for copy and newspaper composites at a paper content of 30 and 40 vol.%, indicating a high potential for constructive and industrial applications of the laminates. Further characterization was carried out by Charpy impact test, water uptake study, TGA and light microscopic analysis. To summarize the characterization, structural paper reinforced composites with attractive properties were obtained.  相似文献   

7.
The failure envelope of the matrix in composite laminates under compressive loads has not received much attention in literature. There are very little to no experimental results to show a suitable failure envelope for this constituent found in composites. With increasing popularity in the use of micromechanical analysis to predict progressive damage of composite structures which requires the use of individual failure criteria for the fibre and matrix, it is important that matrix behaviour under compression is modelled correctly.In this study, off-axis compression tests under uniaxial compression loading are used to promote matrix failure. Through the use of micromechanical analysis involving Representative Volume Elements, the authors were able to extract the principal stresses on the matrix at failure. The results indicated that hydrostatic stresses play an important role in the failure of the matrix. Thus, Drucker–Prager failure criterion is recommended when modelling compressive matrix failure in composite structures.  相似文献   

8.
Review of z-pinned composite laminates   总被引:4,自引:0,他引:4  
A.P. Mouritz   《Composites Part A》2007,38(12):2383-2397
This paper reviews published research into polymer composite laminates reinforced in the through-thickness direction with z-pins. Research into the manufacture, microstructure, delamination resistance, damage tolerance, joint strength and mechanical properties of z-pinned composites is described. Benefits of reinforcing composites with z-pins are assessed, including improvements to the delamination toughness, impact damage resistance, post-impact damage tolerance and through-thickness properties. Improvements to the failure strength of bonded and bearing joints due to z-pinning are also examined. The paper also reviews research into the adverse effects of z-pins on the in-plane mechanical properties, which includes reduced elastic modulus, strength and fatigue performance. Mechanisms responsible for the reduction to the in-plane properties are discussed, and techniques to minimise the adverse effect of z-pins are described. The benefits and drawbacks of z-pinning on the interlaminar toughness, damage tolerance and in-plane mechanical properties are compared against other common types of through-thickness reinforcement for composites, such as 3D weaving and stitching. Gaps in our understanding and unresolved research problems with z-pinned composites are identified to provide a road map for future research into these materials.  相似文献   

9.
Carbon nanotube filled polymer composite can be used as sensitive material of flexible pressure sensor. By using solution mixing method, carbon nanotubes are dispersed into silicone rubber matrix to fabricate the composite. The piezoresistivities of the composite with different carbon nanotube concentrations under repeated compressions are researched quantitatively. The monotonicity of the piezoresistivity is dependent on the content of carbon nanotube and the range of the applied pressure. The reproducibility error of the piezoresistivity decreases with the increase of the compression cycles. The experimental data of the piezoresistivity are fitted by the linear combination of two exponential functions. The piezoresistive mechanism is studied qualitatively by analyzing the changes in the carbon nanotube network.  相似文献   

10.
The large quantities of the petroleum-based foam materials used have raised concern due to their negative effects on the environment, predominantly single-use articles in packaging applications. Thus, considerable efforts have been put forth to develop environmentally friendly alternatives and, in particular, starch foams. Many techniques including extrusion, hot-mold baking/compression, microwave heating, freeze-drying/solvent exchange, and supercritical fluid extrusion can be used to produce starch foams with different cellular structures and properties. Starch by itself is, however, rather weak and water sensitive. To improve microstructure, mechanical and thermal properties, moldability, water resistance, lightness and other properties of starch-based foams, many approaches, e.g., chemical modification of starches, blending with various biodegradable polymers, incorporation of natural fibers, and addition of nanofillers, have been attempted and are intensively reviewed in this article.  相似文献   

11.
This review paper gives an overview of test methods for multiaxial and out-of-plane strength of composite laminates, with special consideration of non-crimp fabrics (NCF) and other textile systems. Tubular and cruciform specimens can provide arbitrary in-plane loading, while off-axis and angle-ply specimens provide specific biaxial loadings. Tensile and compressive out-of-plane strength may be determined by axial loading of specimens with a waisted gauge section, while bending of curved specimens allow determination of the out-of-plane tensile strength. Tests suited for out-of-plane shear strength include the short beam shear test, the inclined double notch test and the inclined waisted specimen. Testing of arbitrary tri-axial stress states using tubular or cruciform specimens with superimposed through-the-thickness loading is highly complex and significant problems have been reported in achieving the intended stress states and failure modes. Specific tri-axial stress states can be obtained by uniaxial loading of specimens with constrained expansion, as in the die channel test.  相似文献   

12.
The aims of the present study are to produce bamboo fiber reinforced composite (BFRC) with high yield and to investigate the mechanical properties of BFRC comparing with those of commercial bamboo scrimber (BS) and laminated bamboo lumber (LBL). A novel process was developed for production of BFRC using oriented bamboo fiber mat (OBFM) made by a pilot machine. The yield and the mechanical properties of BFRC were investigated and analyzed in comparing with those of raw bamboo and other bamboo-based composites. The results show that the novel process produces 92.54% yield of OBFM due to without any chemical and special removing of inner and outer layer of bamboo during processing. In addition, all the mechanical properties and the variability of BFRC were significantly enhanced comparing with those of raw bamboo and other bamboo-based composites.  相似文献   

13.
Herein we report the development and evaluation of hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing mats of electrospun carbon nanofibers (ECNs). The results indicated that (1) the interlaminar shear strength and flexural properties of hybrid multi-scale composite were substantially higher than those of control/comparison composite without ECNs; in particular, the interlaminar shear strength was higher by ∼86%; and (2) the electrical conductivities in both in-plane and out-of-plane directions were enhanced through incorporation of ECNs, while the enhancement of out-of-plane conductivity (∼150%) was much larger than that of in-plane conductivity (∼20%). To validate the data reduction procedure, a new shear stress formula was formulated for composite laminates, which took into account the effect of layup and inter-layers. The study suggested that ECNs could be utilized for the development of high-performance composites, particularly with the improved out-of-plan properties (e.g., interlaminar shear strength).  相似文献   

14.
The advent of graphene heralded by the recent studies on carbon based conducting polymer composites has been a motivation for the use of graphene as an electromagnetic interference (EMI) shielding material. One of the variants of graphene, graphene nanoribbon (GNR) shows remarkably different properties from graphene. The EMI shielding effectiveness of the composite material mainly depends on fillers’ intrinsic conductivity, dielectric constant and aspect ratio. We have synthesized graphene nanoribbon (GNR) – Polyaniline (PANI) – epoxy composite film for effective shielding material in the X-band frequency range of 8.2–12.4 (GHz). We have performed detailed studies of the EMI shielding effect and the performance of the composite and found that the composite shows ∼−40 dB shielding which is sufficient to shield more than 95% of the EM waves in X Band. We checked the shielding effectiveness of the composite film by varying the GNR percentage and the thickness of the film. The strength properties of the synthesized composited were also studied with a aim to have a material having both high strength and EMI shielding properties.  相似文献   

15.
This study uses a melt extrusion method, a method for producing wires, to coat polyester (PET) yarns with polypropylene (PP) and multi-walled carbon nanotubes (MWCNTs). The resulting PP/MWCNTs-coated PET conductive yarns are tested for their tensile properties, processability, morphology, melting and crystallization behaviors, electrical conductivity, and applications. The test results indicate that tensile strength of the conductive yarns increases with an increase in the coiling speed that contributes to a more single-direction-orientated MWCNTs arrangement as well as a greater adhesion between PP/MWCNTs and PET yarns. 8 wt% MWCNTs results in an 18 °C higher crystallization temperature (Tc) of PP and an electrical conductivity of 0.8862 S/cm. The test results of this study have proven that this form of processing technology can prepare PP/MWCNTs-coated PET conductive yarns that have satisfactory tensile properties and electrical conductivity, and can be used in functional woven fabrics and knitted fabrics.  相似文献   

16.
ObjectivesThis paper presents an approach to numerical modeling of hypervelocity impact on carbon fiber reinforced plastics (CFRP).MethodsThe approach is based on the detailed meso-scale representation of a composite laminate. Material models suitable for explicit modeling of laminate structure, including fiber-reinforced layers and resin-rich regions, are described. Two numerical impact tests with significantly different impact energies were conducted on thermoplastic AS4/PEEK materials with quasi-isotropic layups. Simulations employed both SPH and Finite element methods.ResultsResults of simulations are verified against experimental data available from the literature and demonstrate good correlation with the experiments.ConclusionsDeveloped modeling approach can be used in simulations where post-impact damage progression in composite material is of the main focus.  相似文献   

17.
Strain monitoring of a carbon/epoxy composite cross-ply laminate ([05/905]s) during thermoforming was conducted by using fiber Bragg grating (FBG) sensors. The entire process was simulated by employing finite element analysis (FEA) by taking into consideration the phase changes of the epoxy resin. For the precise simulation of the curing process, a dielectrometry sensor was used to detect the epoxy-resin dissipation factor, which in turn was used to identify the curing point. To investigate the phase changes and consolidation of the composite laminate by employing FEA, modulus changes with temperature were measured by dynamic mechanical analysis (DMA), and the permeability was estimated by measuring the fiber volume fraction according to the curing temperature. As the epoxy resin changed from a liquid to solid phase, the strain generated along the carbon fibers dynamically changed, and the analysis results generally predicted the strain variation quite well. To apply this simulation technique to practical structures, a composite-aluminum hybrid wheel was analyzed and experimentally verified.  相似文献   

18.
The flammability, thermal and mechanical properties on cotton fabric were improved by being finished with the composite containing montmorillonite. To this aim, polymer dimethyl diallyl ammonium chloride-allyl glycidyl ether (PDMDAAC-AGE) was prepared and its structure characterized by Fourier transform infrared (FT-IR) and Nuclear magnetic resonance (1H NMR). The quaternary ammonium salt copolymer/montmorillonite composite (PDMDAAC-AGE/MMT) was obtained by polymer intercalation method. The X-ray diffraction (XRD) indicated that the MMT interlayer spacing increased after the polymer intercalation. Composite materials were loaded onto the cotton fabrics by a dip-pad-dry method. The thermo gravimetric analysis (TGA), vertical flame test and limiting oxygen index (LOI) results showed that the thermal and flammability properties of the cotton fabric were improved after it was finished with the composite. Tensile testing revealed an increase on mechanical properties of the finished fabric, but the physical properties hardly changed from the bending length and whiteness results. Scanning electron microscope (SEM) and energy disperse X-ray spectroscope (EDX) results verified the improvement of those properties due to the presence of montmorillonite in the composite.  相似文献   

19.
Solid-state shear pulverization (SSSP) is a continuous process that overcomes challenges in producing well-dispersed polymer composites that cannot be made by twin-screw melt extrusion. We use SSSP to produce 85/15 wt% polypropylene/waste paper biocomposites with polypropylene pellets and 2-cm-square waste paper pieces as starting material. Single-pass SSSP achieves effective filler size reduction and dispersion within the polypropylene matrix. We determine how waste paper size reduction and composite properties are functions of specific energy input and tune specific energy input by SSSP screw design and throughput. Composites made at moderate to high specific energy input (14–35 kJ/g) have 25 to nearly 50% of filler particles at sub-micron size; relative to neat polypropylene, composites exhibit a 70% increase in Young’s modulus, retention of neat polypropylene yield strength, and a ∼50% reduction in crystallization half-time. Estimates indicate that the cost of such biocomposite materials made by SSSP is less than that of virgin polypropylene.  相似文献   

20.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号