首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This work focuses on providing accurate low‐cost approximations of stochastic finite elements simulations in the framework of linear elasticity. In a previous work, an adaptive strategy was introduced as an improved Monte‐Carlo method for multi‐dimensional large stochastic problems. We provide here a complete analysis of the method including a new enhanced goal‐oriented error estimator and estimates of CPU (computational processing unit) cost gain. Technical insights of these two topics are presented in details, and numerical examples show the interest of these new developments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The feature extraction from electroencephalogram (EEG) signals is widely used for computer‐aided epileptic seizure detection. However, multiple channels of EEG signals and their correlations have not been completely harnessed. In this article, a novel automatic seizure detection approach is proposed by analyzing the spatiotemporal correlation of multi‐channel EEG signals. This approach combines the maximum cross‐correlation, robust‐principal component analysis, and least square‐support vector machine to detect the events. Our proposed method delivers higher detection sensitivity, specificity, and accuracy than the state‐of‐the‐art approaches based on the 19 channels’ EEG signals of 37 absence epilepsy patients experiencing 57 seizure events.  相似文献   

4.
An adaptive mesh refinement (AMR) technique is proposed for level set simulations of incompressible multiphase flows. The present AMR technique is implemented for two‐dimensional/three‐dimensional unstructured meshes and extended to multi‐level refinement. Smooth variation of the element size is guaranteed near the interface region with the use of multi‐level refinement. A Courant–Friedrich–Lewy condition for zone adaption frequency is newly introduced to obtain a mass‐conservative solution of incompressible multiphase flows. Finite elements around the interface are dynamically refined using the classical element subdivision method. Accordingly, finite element method is employed to solve the problems governed by the incompressible Navier–Stokes equations, using the level set method for dynamically updated meshes. The accuracy of the adaptive solutions is found to be comparable with that of non‐adaptive solutions only if a similar mesh resolution near the interface is provided. Because of the substantial reduction in the total number of nodes, the adaptive simulations with two‐level refinement used to solve the incompressible Navier–Stokes equations with a free surface are about four times faster than the non‐adaptive ones. Further, the overhead of the present AMR procedure is found to be very small, as compared with the total CPU time for an adaptive simulation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We present an iterative scheme for adaptive smoothing of functional magnetic resonance images. We propose a novel similarity measure to estimate the weights of the smoothing filter based on the functional similarity of the voxels under the smoothing kernel with the voxel under consideration as well as their similarity with a reference time‐course representing the expected BOLD response. We demonstrate the performance of the proposed method by applying the method to preprocess both simulated and real fMRI data. The method improves the functional SNR of the data while preserving the shapes of the functionally active region and its performance is not compromised when structured noise is the dominant noise source. © 2011 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 21, 260‐270, 2011;  相似文献   

6.
7.
The global trend towards performance‐based maintenance contracting has presented new challenges to maintenance service providers as they are compensated or penalized based on performance outcomes instead of time and materials consumed during maintenance service. The problem becomes more complex when uncertainties exist in reliability performance and maintenance activities of technical systems. In this paper, a general framework for managing performance‐based maintenance contract under risks is proposed. We illustrate our approach with an application in a multi‐echelon multi‐system spare parts control problem. Several different performance measures are considered and a probabilistic constrained optimization problem is formulated from the perspective of the service provider. Hybrid simulation/analytic heuristics are proposed to solve the problem based on the monotonic properties of performance measures. This approach is flexible and can be applied to a wide range of problems with similar properties. Numerical example shows that the probability of violating performance requirements is high if the risk is overlooked. We also provide guidelines on how to apply this approach in practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we present a solution framework for high‐order discretizations of conjugate heat transfer problems on non‐body‐conforming meshes. The framework consists of and leverages recent developments in discontinuous Galerkin discretization, simplex cut‐cell techniques, and anisotropic output‐based adaptation. With the cut‐cell technique, the mesh generation process is completely decoupled from the interface definitions. In addition, the adaptive scheme combined with the discontinuous Galerkin discretization automatically adjusts the mesh in each sub‐domain and achieves high‐order accuracy in outputs of interest. We demonstrate the solution framework through several multi‐domained conjugate heat transfer problems consisting of laminar and turbulent flows, curved geometry, and highly coupled heat transfer regions. The combination of these attributes yield nonintuitive coupled interactions between fluid and solid domains, which can be difficult to capture with user‐generated meshes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This article presents a detailed study on the potential and limitations of performing higher‐order multi‐resolution topology optimization with the finite cell method. To circumvent stiffness overestimation in high‐contrast topologies, a length‐scale is applied on the solution using filter methods. The relations between stiffness overestimation, the analysis system, and the applied length‐scale are examined, while a high‐resolution topology is maintained. The computational cost associated with nested topology optimization is reduced significantly compared with the use of first‐order finite elements. This reduction is caused by exploiting the decoupling of density and analysis mesh, and by condensing the higher‐order modes out of the stiffness matrix. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Highly efficient human skin systems transmit fast adaptive (FA) and slow adaptive (SA) pulses selectively or consolidatively to the brain for a variety of external stimuli. The integrated analysis of these signals determines how humans perceive external physical stimuli. Here, a self‐powered mechanoreceptor sensor based on an artificial ion‐channel system combined with a piezoelectric film is presented, which can simultaneously implement FA and SA pulses like human skin. This device detects stimuli with high sensitivity and broad frequency band without external power. For the feasibility study, various stimuli are measured or detected. Vital signs such as the heart rate and ballistocardiogram can be measured simultaneously in real time. Also, a variety of stimuli such as the mechanical stress, surface roughness, and contact by a moving object can be distinguished and detected. This opens new scientific fields to realize the somatic cutaneous sensor of the real skin. Moreover, this new sensing scheme inspired by natural sensing structures is able to mimic the five senses of living creatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号