首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 93 毫秒

1.  轧制复合-粉末冶金发泡工艺制备泡沫铝夹心板  
   祖国胤  张敏  姚广春  李红斌《过程工程学报》,2006年第6卷第6期
   针对目前泡沫铝夹心板制备工艺中存在的主要问题,将轧制复合技术应用于可发泡复合板的制备,以获得更高的芯层粉末致密度与界面结合强度. 研究结果表明,预压成型后的芯层粉体通过轧制过程能够同钢面板实现牢固的初结合,轧后芯层粉末的致密度明显高于热压复合板,粉末颗粒间呈紧密的层片状结构,为发泡过程创造了有利条件. 综合考虑界面结合强度、芯层粉末致密度及轧制缺陷等因素,轧制压下率应控制在60%~70%为宜. 复合板在适宜的发泡工艺下可以获得理想的泡沫体结构,最佳发泡温度为620~640℃,发泡时间为8~10 min. 发泡后在界面上生成了厚度均约为10 μm的金属间化合物FeAl3及Fe/Al固溶体,无脆性金属间化合物Fe2Al5生成,界面形成了理想的冶金结合.    

2.  泡沫铝夹心板的制备及其界面结合机理的研究  被引次数:14
   张敏  祖国胤  姚广春  段水亮《功能材料》,2006年第37卷第2期
   由泡沫铝芯材与金属面板构成的夹心结构具有轻质、高强度、良好的减震性等优点.现存的泡沫铝夹心板的制备方法很多,但均为先制备芯材再进行连接的方法.本研究提出一种新的工艺方法即采用粉末与面板直接轧制然后发泡的方法制备了Fe/Al/Fe泡沫铝夹心结构.研究了泡沫铝芯的发泡不均的问题,分析了发泡前和发泡后面板与泡沫铝芯的冶金结合过程,提出了扩散微观结合机理.最终面板与泡沫芯材通过扩散反应形成了牢固的冶金结合.    

3.  泡沫铝夹芯板粉末冶金发泡机理的SR-CT研究  
   祖国胤  孙溪  黄鹏  孙世亮《稀有金属材料与工程》,2017年第46卷第10期
   利用北京同步辐射装置的SR-CT,通过图像的断层扫描及3D重建,对轧制复合-粉末冶金发泡工艺制备的泡沫铝夹芯板进行了泡孔结构演化的研究,分析了发泡过程中孔隙率的变化及大尺寸连通孔的形成原因。研究结果表明:具有微米级空间分辨率的SR-CT可清晰的观测到泡孔萌生及生长各阶段的泡沫结构。泡孔在发泡15~30s阶段生成,形状为垂直于轧制方向的类裂纹孔。发泡45s时泡孔开始发生明显合并,继续延长发泡时间易导致形成大尺寸连通孔。芯层泡沫铝的孔隙率在泡孔的萌生阶段及合并阶段增长幅度较大,减少混料时发泡剂的“团聚”及提高芯层粉末致密度可获得良好的芯层泡沫结构。    

4.  泡沫铝夹芯板的粉末冶金制备工艺  
   刘佳  祖国胤  卢日环  孙世亮《材料与冶金学报》,2014年第2期
   采用包套轧制法成功制备出了泡沫铝夹芯板,该工艺使泡沫铝夹芯板的面板与芯层达到了冶金结合.重点研究了发泡参数对泡孔生长的影响及泡孔的演变行为.结果表明:发泡温度、冷却速度与最终的发泡效果密切相关.发泡过程中,夹芯板芯层泡孔经历了气泡的形核、长大和合并等过程.    

5.  泡沫铝夹芯板的粉末冶金制备工艺  
   刘佳  祖国胤  卢日环  孙世亮《沈阳黄金学院学报》,2014年第2期
   采用包套轧制法成功制备出了泡沫铝夹芯板,该工艺使泡沫铝夹芯板的面板与芯层达到了冶金结合.重点研究了发泡参数对泡孔生长的影响及泡孔的演变行为.结果表明:发泡温度、冷却速度与最终的发泡效果密切相关.发泡过程中,夹芯板芯层泡孔经历了气泡的形核、长大和合并等过程.    

6.  泡沫铝夹芯板芯材发泡的研究  
   张敏  陈长军  姚广春《功能材料》,2008年第39卷第4期
   泡沫铝夹芯板不仅克服了单一泡沫铝材料强度较低的缺点;而且还具有泡沫铝材料的诸多特殊性能,是一种非常有发展潜力的材料之一.通过复合轧制的方法制备了冶金结合的界面的泡沫铝夹芯板.研究表明,早期发泡的孔隙主要以横向方向长扁孔为特征,主要是长扁孔的形成与扩展.通过对泡沫铝芯材在不同的工艺参数下进行发泡得出通过本实验的最佳混料时间为2h,轧制压下率为60%~70%,发泡温度在620~630℃之间,发泡时间在8~10min.    

7.  钢面板泡沫铝夹心板的三点弯曲行为  
   祖国胤  卢日环  李小兵  仲照阳  马幸江  韩明博  姚广春《中国有色金属学会会刊》,2013年第9期
   采用胶粘法制备大尺寸钢质泡沫铝夹心板,测试夹心板的三点弯曲强度,分析面板厚度、芯层厚度对夹心板弯曲性能的影响规律,研究弯曲载荷作用下的夹心板失效机理。结果表明:钢质泡沫铝夹心板可承受很高的弯曲载荷,夹心板抗弯强度随着芯层泡沫铝厚度的提高而提高。增加钢面板的厚度,夹心板抗弯强度整体呈增强趋势。当面板厚度为8 mm、芯层厚度为50 mm时,夹心板的极限抗弯强度可达66.06 kN。芯层泡沫铝内泡壁表面的大尺寸裂纹是夹心板在弯曲载荷作用下失效的主要原因;采用熔体发泡法制备的泡沫铝板材,因冷却强度过大而导致的附加应力使泡壁的强度下降,也是影响夹心板力学性能的主要因素。    

8.  泡沫铝制备与其压缩性能研究  被引次数:6
   左孝青  赵勇  张喜秋  雷霆  孙加林《粉末冶金技术》,2006年第24卷第3期
   采用粉末致密化发泡(PCF)工艺制备了泡沫纯铝,对制备过程及影响孔结构的因素进行了分析.系统研究了压力、发泡温度、发泡时间、发泡剂含量和粒度对泡沫纯铝结构变化的影响规律,用自行设计的软件FoamScan对孔结构进行了描述.得出了试验条件下的优化工艺参数配置.进行了泡沫铝压缩性能测试,通过理论模型、性能测试数据作图对比的方法获得了孔隙率83%~87%泡沫纯铝的屈服强度表达式.确定了泡沫纯铝的制备工艺、结构、性能的相互关系.    

9.  以TiH_2为发泡剂制备泡沫铝的研究现状  
   赵艳君  胡治流  庞兴志《热加工工艺》,2010年第39卷第8期
   探讨了发泡剂发泡法、粉末冶金发泡法、累积叠轧焊法中以TiH2为发泡剂制备泡沫铝的研究进展.在发泡剂发泡法中,对TiH2发泡剂高温下分解过快问题采取了热处理、化学改性、包覆等方法以减缓其释气速率,使泡沫铝生产易于控制;在粉末冶金发泡法、累积叠轧焊法制备泡沫铝夹心板的过程中,后者更有利于TiH2发泡剂的均匀分布.    

10.  粉末包套轧制工艺对泡沫铝夹芯板制备的影响  
   马俊杰  宋滨娜  章顺虎  洪玉鹏  戴志伟  祖国胤  姚广春《轻金属》,2015年第2期
   采用粉末包套轧制法成功制备出泡沫铝夹层板,通过对粉末包套轧制工艺的研究,结合SAYN-CG90数码相机和扫描电镜(SEM)等检测方法系统研究了初始密度和压下率对制备可发泡预制体的影响,以及泡沫铝夹层板的泡孔结构的影响,结果表明:当初始密度大于2.40g/cm3,压下率为65%~75%的时候,可以获得面板表面良好,粉体均匀、致密的预制坯,并且实现面板与芯层的有效结合,最终获得泡孔结构完整和均匀的泡沫铝夹芯板。    

11.  泡沫铝合金三明治结构结合界面及剪切性能的研究  
   张敏  陈长军  姚广春《功能材料》,2008年第39卷第6期
   提出了一种新的泡沫铝合金三明治结构的制备工艺--直接将铝板/混合粉末/铝板通过一次大压下量复合轧制,然后在炉中直接发泡成最终产品的制备工艺.实验成功的制备出铝面板的泡沫铝合金芯的三明治板.讨论了铝面板泡沫铝夹芯板轧制过程中以及发泡过程中界面的结合情况及界面结合机理.结果表明,轧制过程中界面结合属于机械结合,结合机制为薄膜理论;发泡过程中界面结合属于冶金结合,而铝面板与粉末体结合发泡后,界面处则只发生Al原子的互扩散,没有新相生成.剪切实验结果表明,预制坯的界面剪切强度较低,能够直接在界面处剥离开或者将板剥离开一半后将板拉断;而发泡后的泡沫铝夹芯板的界面结合力很强,剪切时断裂发生在芯材中或者铝面板上.    

12.  粉末冶金法浸入式发泡制作泡沫铝的试验研究  被引次数:4
   高洪吾  刘士魁  赵彦波  刘顺华《特种铸造及有色合金》,2005年第25卷第8期
   研究了浸入法制备泡沫铝的发泡新工艺以及工艺参数对发泡效果的影响,得出以工业纯铝粉和而H2粉为原料,制备气泡均匀、孔隙可控的泡沫铝的工艺参数为:浸入温度为680~760℃,浸入时间为10~30s,保温发泡时间为10~60s。研究结果表明,粉末冶金法浸入式发泡制备泡沫铝的效果好、结构均匀、TiH2利用率高,是一种有较好开发前景的新制备方法。    

13.  粉体发泡法泡沫铝制备工艺及性能的研究  被引次数:11
   王芳  王录才《铸造设备研究》,2002年第1期
   本文研究一种新的泡沫铝制备方法———粉体发泡法。其工艺原理为 :混合铝粉与一种发泡剂粉末 (TiH2 ) ,在一定温度下轴向压缩得到具有气密结构的预制品 ,加热预制品使发泡剂分解释放出气体迫使预制品膨胀得到泡沫铝。混合、压制和发泡是粉体发泡法的三个重要环节。本论文详细研究了各个工艺过程 ,确定了其在试验条件下的最佳工艺参数值。混合速度 2 5 0r/min ,混合时间大于 6h可以保证得到混合均匀的粉末混合物。压力 130~ 15 0MPa ,压制混合 40 0℃~ 45 0℃时可以得到具有气密结构的预制品。同时调整发泡工艺中的参数发泡剂用量 (1%左右 )、发泡温度 (6 0 0℃~ 72 0 0℃ )、发泡时间 (3~ 15min)可以得到不同孔结构的泡沫铝。泡沫铝的吸能能力和其压缩性能紧密相连。在其压缩应力应变曲线上有很长的一段平台区 ,显示出较大的吸能能力。其吸能能力受孔隙率的影响 ,随孔隙率呈非单调变化 ,在某一孔隙率下具有最大的吸能能力。吸能效率随应变的增加先增大后减小 ,在应变 0 .1~ 0 .3之间存在一个峰值。研究了闭孔泡沫铝的导热性能 ,结果表明泡沫铝的导热性能低于实体铝 ,其导热性能不仅与孔隙率有很大的关系 ,而且其它孔结构及其宏观结构的影响也是不容忽视的    

14.  粉末冶金法制备泡沫铝材研究进展  被引次数:3
   魏莉  罗洪杰  姚广春  张晓明《轻金属》,2003年第11期
   介绍了泡沫铝材的用途和应用前景,国内外的研究现状,重点阐述了采用粉末冶金法制备泡沫铝材的基本原理、工艺流程,与其它方法比较的优缺点。对粉末冶金法制备泡沫铝过程的制坯压力、发泡剂量、发泡温度、发泡时间等参数对发泡过程的影响进行了讨论,分析了泡沫铝研究的现存问题及发展趋势。    

15.  轧制复合法制备泡沫铝夹心板发泡预制坯  
   祖国胤  李鸿  李兵  姚广春《特种铸造及有色合金》,2009年第29卷第2期
   通过轧制复合过程,获得了具有高致密度芯层特征的发泡预制坯,研究了轧制压下率对粉末致密度及均匀性的影响,分析了粉末层的变形特征.结果表明,轧制过程可以使芯层粉末获得显著高于热压坯的致密度,综合考虑致密度的总体水平及沿宽度方向的均匀性,最佳轧制压下率为65%.在轧制力的作用下,具有不规则表面的芯层粉末相互接触,并产生变形,粉末颗粒表面的凸起部分与基体分离,轧制后大量小尺寸铝合金粉末颗粒富集于粉末颗粒交界区域.    

16.  镁的添加对制备泡沫铝夹芯板泡孔稳定性的影响  被引次数:9
   张敏  祖国胤  姚广春《功能材料》,2007年第38卷第4期
   通过粉末-铝板复合轧制方法制备出一种界面为冶金结合的泡沫铝夹芯板.分别采用对发泡剂的处理和添加Mg元素的方法来提高芯材泡沫的稳定性.研究发现只有同时对发泡剂处理以及添加Mg元素才能够提高泡沫的稳定性.研究了此种方法中重要的泡沫稳定机制,Mg元素的添加改善了铝硅合金粉末原料生产过程中产生的氧化物颗粒在孔壁上的润湿性,使氧化物颗粒嵌入孔壁中,阻碍了孔壁上金属排液现象的产生,有效的起到稳定泡孔的作用.    

17.  泡沫铝三明治预制坯变形行为及复杂结构制备  
   王耀奇  张艳苓  闫文萱  任学平  侯红亮《稀有金属》,2018年第3期
   利用粉末包套轧制法制备出泡沫铝三明治预制坯,通过室温与高温拉伸实验,研究了三明治预制坯的变形行为;采用冲压成形技术进行了三明治预制坯的成形试验,评价了其成形性能;在高温条件下进行了三明治预制坯的发泡实验,利用光学金相对泡沫铝三明治的微观结构进行了观察,并对孔隙特征进行了计算。结果显示,三明治预制坯既是温度敏感型材料也是速率敏感型材料,在450℃/0.001 s-1的条件下表现出较好的变形性能,其峰值应力与延伸率分别为22.1 MPa和23.8%;与室温条件相比,三明治预制坯在450℃条件下的热冲压成形精度更高,型面弧高达27.1 mm;高温发泡后制备出泡沫铝三明治弧面结构和曲面结构,证实了该工艺路线的可行性,其面板与芯板之间形成了冶金结合,且芯板的孔隙率达78%,平均孔径为3.5 mm,孔壁的微观组织为树枝状α铝和共晶相α+Si组成。    

18.  泡沫铝夹芯板的制备技术  被引次数:1
   张敏  陈长军  姚广春《材料导报》,2008年第22卷第1期
   泡沫金属是一类具有低密度以及新奇的物理、力学、电学、声学等特殊性能的新型材料.而泡沫铝的潜在用途之一是作为泡沫铝夹芯板的芯材使用.详细介绍了制备泡沫铝夹芯板的不同方法,如胶粘法、超声焊接法、激光协助发泡法、扩散焊接法、面板与预制材料轧制-包覆法和粉末复合轧制法等.通过比较,在国内粉末复合轧制法工艺简单,是最有希望适合高温作业和大批量生产的方法.    

19.  泡沫铝三明治结构的制备  被引次数:9
   梁晓军 朱勇刚 陈锋 何德坪《江苏冶金》,2004年第32卷第1期
   采用粉末冶金发泡法制备了Ti/Al/Ti,Al/AlSi7/Al泡沫铝芯三明治结构,研究了泡沫铝制备工艺参数的影响,讨论了混粉、压力、温度等对发泡性能的影响,并对泡沫铝制备中的排液现象进行了探讨。    

20.  泡沫铝夹芯板制备及其冲击性能研究  被引次数:1
   张敏  祖国胤  姚广春  刘宜汉《有色金属》,2008年第60卷第3期
   采用复合轧制的方法,即将带有发泡剂的混合粉末置于两铝面板之间进行复合轧制使之成为预制发泡体,然后再在炉中发泡的方法,制备界面为冶金结合的泡沫铝夹芯板,通过摆锤冲击实验,研究界面为冶金结合的泡沫铝夹芯板与胶接夹芯板的冲击性能的区别.结果表明,胶接界面冲击后发生开裂,冶金结合的界面冲击后并没有发生开裂现象,界面为冶金结合的泡沫铝夹芯板的抗冲击性要比胶接的好.冶金结合界面夹芯板,孔隙率较大的抗冲击性比孔隙率较小的好.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号