首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Abstract

Au–FexOy composite nanoparticles (NPs) are of great technological interest due to their combined optical and magnetic properties. However, typical syntheses are neither simple nor ecologically friendly, creating a challenging situation for process scale-up. Here we describe conditions for preparing Au–FexOy NPs in aqueous solutions and at ambient temperatures, without resorting to solvents or amphiphilic surfactants with poor sustainability profiles. These magnetic gold nanoclusters (MGNCs) are prepared in practical yields with average sizes slightly below 100 nm, and surface plasmon resonances that extend to near-infrared wavelengths, and sufficient magnetic moment (up to 6 emu g–1) to permit collection within minutes by handheld magnets. The MGNCs also produce significant photoluminescence when excited at 488 nm. Energy dispersive X-ray (EDX) analysis indicates a relatively even distribution of Fe within the MGNCs, as opposed to a central magnetic core.  相似文献   

2.
Although hypodermic needles are a “gold standard” for transdermal drug delivery (TDD), microneedle (MN)-mediated TDD denotes an unconventional approach in which drug compounds are delivered via micron-size needles. Herein, an isotropic XeF2 dry etching process is explored to fabricate silicon-based solid MNs. A photolithographic process, including mask writing, UV exposure, and dry etching with XeF2 is employed, and the MN fabrication is successfully customized by modifying the CAD designs, photolithographic process, and etching conditions. This study enables fabrication of a very dense MNs (up to 1452 MNs cm−2) with height varying between 80 and 300 µm. Geometrical features are also assessed using scanning electron microscopy (SEM) and 3D laser scanning microscope. Roughness of the MNs are improved from 0.71 to 0.35 µm after titanium and chromium coating. Mechanical failure test is conducted using dynamic mechanical analyzer to determine displacement and stress/strain values. The coated MNs are subjected to less displacement (≈15 µm) upon the applied force. COMSOL Multiphysics analysis indicates that MNs are safe to use in real-life applications with no fracture. This technique also enables the production of MNs with distinct shape and dimensions. The optimized process provides a wide range of solid MN types to be utilized for epidermis targeting.  相似文献   

3.
Diamond is a highly desirable material for state‐of‐the‐art micro‐electromechanical (MEMS) devices, radio‐frequency filters and mass sensors, due to its extreme properties and robustness. However, the fabrication/integration of diamond structures into Si‐based components remain costly and complex. In this work, a lithography‐free, low‐cost method is introduced to fabricate diamond‐based micro‐resonators: a modified home/office desktop inkjet printer is used to locally deposit nanodiamond ink as ?50–60 µm spots, which are grown into ≈1 µm thick nanocrystalline diamond film disks by chemical vapor deposition, and suspended by reactive ion etching. The frequency response of the fabricated structures is analyzed by laser interferometry, showing resonance frequencies in the range of ≈9–30 MHz, with Q ‐factors exceeding 104, and (f0 × Q) figure of merit up to ≈2.5 × 1011 Hz in vacuum. Analysis in controlled atmospheres shows a clear dependence of the Q‐factors on gas pressure up until 1 atm, with Q ∝ 1/P. When applied as mass sensors, the inkjet‐printed diamond resonators yield mass responsivities up to 981 Hz fg?1 after Au deposition, and ultrahigh mass resolution up to 278 ± 48 zg, thus outperforming many similar devices produced by traditional top‐down, lithography‐based techniques. In summary, this work demonstrates the fabrication of functional high‐performance diamond‐based micro‐sensors by direct inkjet printing.  相似文献   

4.
Three different plastic films of biaxially oriented polypropylene (BOPP), biaxially oriented polyethylene terephthalate (BOPET) and low‐density polyethylene (LDPE) were perforated using Nd‐YAG laser. Effects of laser pulse energy were examined by varying energies from 50 to 250 mJ where the pulse duration and pulse repetition were kept constant at 10 ns and 1 Hz, respectively. It was found that perforation diameters of all films increased with increasing pulse energies. Observed perforations were different among the three film types. Explanation was contributed to material inherent property and its interaction with laser. Incorporation of an inorganic filler (i.e. silica based anti‐blocking agent used in packaging film) of 0.5 wt% into the LDPE films (0.5Si‐LDPE) could improve perforation performance for LDPE. This was attributed to an increased thermal diffusivity of the 0.5Si‐LDPE film. Commercial BOPET and BOPP films containing 97 microholes/m2 (hole diameter of ~100 µm) showed an improvement in oxygen transmission rates (OTR) of 18 and 5 times that of the neat films without perforation. In the case of perforated 0.5Si‐LDPE films having similar perforations of 97 microholes/m2 and perforation diameter of 100 µm, a two‐fold increase of OTR was obtained. Gas transmission rates of the microperforated films were measured based on the static method. Measured OTR and CO2TR values of the three films with varying perforation diameters in a range of ~40–300 µm were compared and discussed. Overall results clearly indicate that perforation by laser is an effective process in developing breathable films with tailored oxygen transmission property for fresh produce packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Two InP‐based III–V semiconductor etching recipes are presented for fabrication of on‐chip laser photonic devices. Using inductively coupled plasma system with a methane free gas chemistry of chlorine and nitrogen at a high substrate temperature of 250 °C, high aspect ratio, anisotropic InP‐based nano‐structures are etched. Scanning electron microscopy images show vertical sidewall profile of 90° ± 3°, with aspect ratio as high as 10. Atomic Force microscopy measures a smooth sidewall roughness root‐mean‐square of 2.60 nm over a 3 × 3 μm scan area. The smallest feature size etched in this work is a nano‐ring with inner diameter of 240 nm. The etching recipe and critical factors such as chamber pressure and the carrier plate effect are discussed. The second recipe is of low temperature (?10 °C) using Cl2 and BCl3 chemistry. This recipe is useful for etching large areas of III–V to reveal the underlying substrate. The availability of these two recipes has created a flexible III–V etching platform for fabrication of on‐chip laser photonic devices. As an application example, anisotropic InP‐based waveguides of 3 μm width are fabricated using the Cl2 and N2 etch recipe and waveguide loss of 4.5 dB mm?1 is obtained.
  相似文献   

6.
Direct laser patterning of supported phospholipid multilayers is investigated. Spin coating is used to fabricate stacked bilayers of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphate (DOPA). Photothermal processing with a focused laser beam at λ = 514 nm allows removal of the coating at predefined positions without causing any significant change in adjacent areas. Moreover, processing with nanoscale precision is feasible despite the soft and fluid nature of phospholipid films. In particular, holes with diameters from 1.8 µm down to 300 nm and below are fabricated by using a 1/e2 laser spot size of about 2.5 µm. In addition, patterning is also very flexible and can be carried out over macroscopic length scales and at short processing times. Considering these features photothermal laser processing constitutes a powerful tool for micro‐ and nanopatterning of phospholipid films.  相似文献   

7.
Motion control is essential for various applications of man‐made nanomachines. The ability to control and regulate the movement of catalytic nanowire motors is illustrated by applying short heat pulses that allow the motors to be accelerated or slowed down. The accelerated motion observed during the heat pulses is attributed primarily to the thermal activation of the redox reactions of the H2O2 fuel at the Pt and Au segments and to the decreased viscosity of the aqueous medium at elevated temperatures. The thermally modulated motion during repetitive temperature on/off cycles is highly reversible and fast, with speeds of 14 and 45 µm s?1 at 25 and 65 °C, respectively. A wide range of speeds can be generated by tailoring the temperature to yield a linear speed–temperature dependence. Through the use of nickel‐containing nanomotors, the ability to combine the thermally regulated motion of catalytic nanomotors with magnetic guidance is also demonstrated. Such on‐demand control of the movement of nanowire motors holds great promise for complex operations of future manmade nanomachines and for creating more sophisticated nanomotors.  相似文献   

8.
We present the results of a numerical study of the generation process of difference frequency radiation (DFR) arising via the interaction of mutually orthogonal linearly- polarized few-cycle laser pulses propagating in a quasi-phase-matching (QPM) GaAs crystal. Considered the interaction of pulses having the central wavelengths of 1.98 µm, duration of 30 fs with the electric field amplitude 200 MV/m, propagating along the normal to the ?110? plane. The period Λ of the QPM GaAs crystal in numerical simulations varied from 20.89 µm to 53.23 µm. It is shown that by changing the grating period of the QPM GaAs crystal from 23.02 µm to 37.29 µm it is possible to improve the efficiency of QPM generation of DFR in the 5.48 µm – 10.12 µm spectral range at least by 8 dB in comparison with the generation of DFR in bulk crystal GaAs in the same spectral range.  相似文献   

9.
Recently, an emergent layered material Td‐WTe2 was explored for its novel electron–hole overlapping band structure and anisotropic inplane crystal structure. Here, the photoresponse of mechanically exfoliated WTe2 flakes is investigated. A large anomalous current decrease for visible (514.5 nm), and mid‐ and far‐infrared (3.8 and 10.6 µm) laser irradiation is observed, which can be attributed to light‐induced surface bandgap opening from the first‐principles calculations. The photocurrent and responsivity can be as large as 40 µA and 250 A W?1 for a 3.8 µm laser at 77 K. Furthermore, the WTe2 anomalous photocurrent matches its in‐plane crystal structure and exhibits light polarization dependence, maximal for linear laser polarization along the W atom chain a direction and minimal for the perpendicular b direction, with the anisotropic ratio of 4.9. Consistently, first‐principles calculations confirm the angle‐dependent bandgap opening of WTe2 under polarized light irradiation. The anomalous and polarization‐sensitive photoresponses suggest that linearly polarized light can significantly tune the WTe2 surface electronic structure, providing a potential approach to detect polarized and broadband lights up to far infrared range.  相似文献   

10.
Contact lens is a ubiquitous technology used for vision correction and cosmetics. Sensing in contact lenses has emerged as a potential platform for minimally invasive point‐of‐care diagnostics. Here, a microlithography method is developed to fabricate microconcavities and microchannels in a hydrogel‐based contact lens via a combination of laser patterning and embedded templating. Optical microlithography parameters influencing the formation of microconcavities including ablation power (4.3 W) and beam speed (50 mm s?1) are optimized to control the microconcavity depth (100 µm) and diameter (1.5 mm). The fiber templating method allows the production of microchannels having a diameter range of 100–150 µm. Leak‐proof microchannel and microconcavity connections in contact lenses are validated through flow testing of artificial tear containing fluorescent microbeads (Ø = 1–2 µm). The microconcavities of contact lenses are functionalized with multiplexed fluorophores (2 µL) to demonstrate optical excitation and emission capability within the visible spectrum. The fabricated microfluidic contact lenses may have applications in ophthalmic monitoring of metabolic disorders at point‐of‐care settings and controlled drug release for therapeutics.  相似文献   

11.
Abstract

Optical amplification of a Brewster-angled stripe travelling-wave laser amplifier operating at 1·3 µm is described. An actively mode-locked external cavity semiconductor laser generating pulses of duration from 11 to 30 ps was used as a signal source. Maximum single-pass gain of 32 dB was attained for an input of ?24 dB m and a maximum output peak power of 25 dB m was measured for an input power of 8 dB m. Narrowing in the amplified pulse was observed on a synchroscan streak camera when the amplifier gain is too weak to sustain constant temporal amplification across the whole pulse  相似文献   

12.
Huge challenges remain regarding the facile fabrication of neat metallic nanowires mesh for high‐quality transparent conductors (TCs). Here, a scalable metallic nanowires bundle micromesh is achieved readily by a spray‐assisted self‐assembly process, resulting in a conducting mesh with controllable ring size (4–45 µm) that can be easily realized on optional polymer substrates, rendering it transferable to various deformable and transparent substrates. The resultant conductors with the embedded nanowires bundle micromesh deliver superior and customizable optoelectronic performances, and can sustain various mechanical deformations, environmental exposure, and severe washing, exhibiting feasibility for large‐scale manufacturing. The silver nanowires bundle micromesh with explicit conductive paths is embedded into an ethyl cellulose (EC) transparent substrate to achieve superior optoelectronic properties endowed by a low amount of incorporated nanowires, which leads to reduced extinction cross‐section as verified by optical simulation. A representative EC conductor with a low sheet resistance of 25 Ω □?1, ultrahigh transmittance of 97%, and low haze of 2.6% is attained, with extreme deformability (internal bending radius of 5 µm) and waterproofing properties, opening up new possibilities for low‐cost and scalable TCs to replace indium‐tin oxide (ITO) for future flexible electronics, as demonstrated in a capacitive touch panel in this work.  相似文献   

13.
Abstract

A synchronously pumped fibre Raman oscillator has been constructed employing a mode-locked c.w. Nd:YAG laser as a pump source and 150 m of single-mode optical fibre as the Raman-active medium. A detailed spectral and temporal study of the laser has been undertaken. Time-dispersion tuning offered an operating spectral range of 1·0725–1·1220 µm for the first Stokes oscillation and 1·149–1·179 µm for the associated second Stokes component. Pulse durations ~ 100 ps were generated with average output powers of about 40 and 9 mW for the first and second Stokes Raman pulses respectively.  相似文献   

14.
A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopores with anisotropic etching on crystalline silicon through reactive ion etching, with the purpose of enhancing the anti-reflection of silicon substrates. A unique two-step anodizing method was introduced to create high quality nano-channels and it was demonstrated that this process is superior over a one-step anodization approach. It was found that pore to pore distance and pore density can be tuned by changing the applied potential within a range of 10–80 V. Optical characterization of the nanopatterned silicon showed an average 10% reduction in reflection in the UV–Vis wavelength range.  相似文献   

15.
Shape‐transformable liquid metal (LM) micromachines have attracted the attention of the scientific community over the past 5 years, but the inconvenience of transfer routes and the use of corrosive fuels have limited their potential applications. In this work, a shape‐transformable LM micromotor that is fabricated by a simple, versatile ice‐assisted transfer printing method is demonstrated, in which an ice layer is employed as a “sacrificial” substrate that can enable the direct transfer of LM micromotors to arbitrary target substrates conveniently. The resulting LM microswimmers display efficient propulsion of over 60 µm s?1 (≈3 bodylength s?1) under elliptically polarized magnetic fields, comparable to that of the common magnetic micro/nanomotors with rigid bodies. Moreover, these LM micromotors can undergo dramatic morphological transformation in an aqueous environment under the irradiation of an alternating magnetic field. The ability to transform the shape and efficiently propel LM microswimmers holds great promise for chemical sensing, controlled cargo transport, materials science, and even artificial intelligence in ways that are not possible with rigid‐bodies microrobots.  相似文献   

16.
Laser polishing is a contact‐free, quick and automated method to smooth surfaces. The method has been applied to different forging and casting aluminum alloys. The surfaces of the samples were belt‐grinded with a grain size of mesh 240. The samples are protected from ambient air in a gas shield chamber. The used laser system is an Nd : YAG Laser with maximum pulse energy of 65 J. The initial and the laser polished surfaces have been analyzed by microscopy, roughness spectroscopy, white light interferometry and cross‐section polishes. The surfaces of the laser polished forging alloys are covered by multiple lateral and horizontal cracks. Unlike the forging alloys, the casting alloys could be processed well by laser polishing. The initial surface roughness of Ra240 = 1.37 µm was reduced up to RaLP ≈ 0.47 µm. This represents a roughness reduction of 66%. The roughness spectroscopy of the laser polished surface shows for structural wavelengths from 2.5 µm to 500 µm a Ra‐value close to 0.1 µm and from 500 µm to 800 µm higher values. The remelted area extends up to100 µm into the material.  相似文献   

17.
Heteroepitaxial growth of lattice mismatched materials has advanced through the epitaxy of thin coherently strained layers, the strain sharing in virtual and nanoscale substrates, and the growth of thick films with intermediate strain‐relaxed buffer layers. However, the thermal mismatch is not completely resolved in highly mismatched systems such as in GaN‐on‐Si. Here, geometrical effects and surface faceting to dilate thermal stresses at the surface of selectively grown epitaxial GaN layers on Si are exploited. The growth of thick (19 µm), crack‐free, and pure GaN layers on Si with the lowest threading dislocation density of 1.1 × 107 cm?2 achieved to date in GaN‐on‐Si is demonstrated. With these advances, the first vertical GaN metal–insulator–semiconductor field‐effect transistors on Si substrates with low leakage currents and high on/off ratios paving the way for a cost‐effective high power device paradigm on an Si CMOS platform are demonstrated  相似文献   

18.
In this paper, Au@Ag nanopencil is designed as a multimodality plasmonic nanoprobe based on asymmetric etching for the detection of SCN and ClO. Au@Ag nanopencil with Au tip and Au@Ag rod is prepared by asymmetric tailoring of uniformly grown silver-covered gold nanopyramids under the combined effect of partial galvanic replacement and redox reaction. By asymmetric etching in different systems, Au@Ag nanopencil exhibits diversified changes in the plasmonic absorption band: O2•− facilitated by SCN etches Au@Ag rod from the end to the tip, causing a blue shift of the localized surface plasmon resonance (LSPR) peak as the aspect ratio decreases; while the ClO can retain Au@Ag shell and etch Ag within rod from the tip to the end, causing a redshift of the LSPR peak as the coupling resonance weakens. Based on peak shifts in different directions, a multimodality detection of SCN and ClO has been established. The results demonstrate the detection limits of SCN and ClO are 160 and 6.7 nm , and the linear ranges are 1–600 µm and 0.05–13 µm , respectively. The finely designed Au@Ag nanopencil not only broadens the horizon of designing heterogeneous structures, but also enriches the strategy of constructing multimodality sensing platform.  相似文献   

19.
Hafnium diboride (HfB2) is used in hypervelocity re-entry vehicles (such as intercontinental ballistic missile (ICBM) or ICBM heat shields), nuclear reactors and aerodynamic leading edges because of its strong tensile strength and high thermal resistance. HfB2 is an ultra-high-temperature ceramic (UHTC) with a melting point of 3250°C. In this paper, we study the performance of HfB2 as a saturable absorber in Q-switched lasers. HfB2 has a non-saturable absorptance of 2.5?dB/µm, a saturable absorptance of 0.8?dB/µm and a saturation fluence of 12?µJ/cm2. In addition, the saturation lifetime is estimated as 989.3?ps, while the recovery lifetimes are estimated as 254.9 and 22.1?ps. As a saturable absorber in our Q-switched laser, we observed pulses with durations between 880 and 2000?ns. With the addition of an acousto-optic modulator, we have observed Q-switching mode-locking, with pulses as low as 250?ns. HfB2 can potentially work at very high power, since its damage fluence is no less than 361?mJ/cm2.  相似文献   

20.
Nanopores with lateral dimensions as small as 33 nm have been fabricated by nuclear track etching in 5 m thick, single crystal mica wafers. The nanopores have a diamond shape with their axes aligned with the crystal axes of mica as a result of anisotropic etching. Nickel nanowire arrays with a constant volume fraction have been fabricated by electrodeposition into the nanopores. The magnetic properties of the nickel nanowire arrays in the mica templates are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号