首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 181 毫秒
1.
三向编织玻璃/环氧复合材料刚度性能   总被引:1,自引:0,他引:1       下载免费PDF全文
通过实验研究了三向编织玻璃/环氧复合材料的刚度性能 , 并考虑编织角和试件宽度参数的影响 , 探讨了拉伸和压缩刚度性能的差异。实验结果表明 : 在同一纤维体积分数条件下 , 随着编织角的增大 , 试件的纵向弹性模量有所减小 , 泊松比 (在编织角约大于 35° 时) 也有所减小 ; 宽度为两倍和三倍单胞宽度的试件的刚度性能基本相同; 试件的纵向弹性模量和泊松比远大于横向弹性模量和泊松比; 拉伸和压缩时试件的弹性模量和泊松比基本接近 ; 在横向拉伸和压缩时试件的应力2应变曲线具有明显的非线性特征。实验结果为编织复合材料结构设计提供了数据参考。   相似文献   

2.
将二维编织结构简化为(0°/90°)s正交铺层结构。采用含损伤变量的剪滞分析理论,解得双向等轴拉伸载荷下,0°层和90°层开裂后各层的应力分布;基于随机基体裂纹演化理论,随机纤维损伤和最终失效理论,确定了0°层和90°层沿纤维方向的应力-应变关系,以及切线拉伸模量与施加载荷之间的关系;然后,将切线拉伸模量代入正交铺层结构的剪滞分析中,进而预测出二维编织陶瓷基复合材料在双向等轴拉伸载荷下的应力-应变关系。预测结果表明:在双向等轴拉伸载荷下,二维编织陶瓷基复合材料的横向和纵向应力-应变曲线基本相同,与单向加载时的应力-应变曲线相近。  相似文献   

3.
三维编织复合材料压缩力学性能的实验研究   总被引:10,自引:6,他引:10       下载免费PDF全文
通过宏观压缩实验,研究了三维四向编织复合材料的抗压力学性能;同时,为了认识其压缩失效机理,对压缩试件的破坏断口进行了扫描电镜分析。实验结果表明:纵向压缩模量比横向压缩模量大得多;影响纵向压缩力学性能的主要参数是材料的编织角,随编织角的变化,复合材料的纵向压缩破坏机理发生了变化,编织角较小时,材料表现为脆性特征;当编织角大于某个角度,材料的应力-应变曲线趋于非线性,延性增加,更多地表现为塑性破坏特征。此外,横向压缩的破坏机理与纵向压缩明显不同。  相似文献   

4.
三维五向编织复合材料纵向性能的实验研究   总被引:9,自引:2,他引:9  
通过对具有不同编织结构参数的三维五向编织复合材料试件的纵向拉伸和压缩实验,分析了该类材料的纵向拉、压刚度和强度随编织工艺参数的变化规律以及材料的失效形式.三维五向编织复合材料在破坏前基本保持线弹性,纵向拉、压破坏具有脆性特征,拉伸模量和压缩模量比较接近,但拉伸强度远大于压缩强度.编织角和纤维体积含量对材料性能的影响显著,纱线粗细的影响不大.提高第五向纱线的比例,可提高材料的纵向性能.此外,研究中采用短标距薄板试件,以避免试件产生整体屈曲和端部纤维束开裂破坏.  相似文献   

5.
2D-C/ SiC 复合材料的宏观拉压特性和失效模式   总被引:25,自引:6,他引:19       下载免费PDF全文
通过拉伸、压缩实验, 从宏观上研究了平纹编织C/ SiC 复合材料在简单载荷作用下模量、残余应变及泊松比的变化。通过断口观察, 分析了材料在面内拉、压载荷作用下的损伤与失效模式。实验结果表明, 拉伸载荷作用下, 材料在低应力就开始损伤。0°纤维束表面基体开裂和层间裂纹是主要损伤形式。损伤后, 随着应力增加, 拉伸卸载模量、泊松比线性减小, 残余应变增加; 压缩应力-应变基本呈直线关系, 模量、泊松比基本不变。拉伸破坏表现为韧性断裂, 断裂机理为分层后0°纤维束的断裂、携带90°纤维束拔出; 压缩破坏形成一个与加载方向成13°的断裂平面, 破坏机理为层间裂纹、0°/ 90°纤维束之间裂纹和90°纤维束内裂纹的产生和迅速扩展、最后0°纤维束剪切断裂。   相似文献   

6.
利用分离式霍普金森压杆(SHPB)装置对三维四向编织碳纤维增强树脂基复合材料的动态压缩性能进行了研究。通过对编织角为20°、30°和45°的试验件分别进行沿纵向、横向和厚度方向的动态压缩试验,得到材料在800~2 000/s应变率范围内的应力-应变曲线,并与准静态压缩试验结果进行对比,研究了应变率、压缩方向及编织角对材料极限强度和弹性模量的影响。结合高速摄影记录的动态压缩过程,进一步分析了不同情况下材料的破坏模式与破坏过程。结果表明:应变率越高,材料的极限强度和弹性模量越大,材料在受压的三个方向上均具有一定的应变率强化效应,且高应变率下表现出比准静态压缩时更明显的脆性;编织角的改变对材料在三个方向上的动态压缩性能均有影响,其中对纵向的影响最为明显;不同方向受压时材料的失效形式不同,且准静态和高应变率下的失效形式也有区别。  相似文献   

7.
三维编织C/SiC复合材料的拉压实验研究   总被引:10,自引:7,他引:10       下载免费PDF全文
针对三维编织C/SiC复合材料进行了拉伸试验和压缩试验,得到了材料拉伸、压缩的主要力学性能参数、损伤发展情况及破坏规律。从宏观角度比较了在两种载荷下材料弹性性能及强度的区别,得到了一些试验研究结论。结果表明:三维编织C/SiC在拉伸和压缩载荷下的应力-应变曲线有明显的非线性特性;拉伸模量低于压缩模量;拉伸强度高于压缩强度;声发射数据可以用来检测材料内部损伤的发展。   相似文献   

8.
通过对2D-C/SiC复合材料试件进行不同偏轴角度的拉伸实验,研究了偏轴角度对材料拉伸力学特性的影响。通过应变片分别测得了材料加载方向和纤维束方向上的应力-应变行为,对比分析了偏轴角度对上述应力-应变行为的影响;并结合试件断口扫描电镜照片,阐释了纤维束方向上拉伸和剪切损伤间的相互耦合效应。实验结果表明,材料的拉伸模量和强度随偏轴角度的增大出现明显下降;材料纤维束方向上的拉伸损伤和剪切损伤具有显著的相互促进作用。最后,以材料0°拉伸和45°拉伸实验数据为基础,建立了材料的偏轴拉伸应力-应变行为预测模型,模型预测结果与实验结果吻合较好。  相似文献   

9.
对未经炭化和经不同温度炭化处理后的三维五向碳/酚醛编织复合材料进行了纵向和横向拉伸实验, 获得了拉伸应力-应变曲线, 并确定了材料的拉伸强度、 拉伸模量、 破坏应变和泊松比等主要力学性能, 分析了这类材料经不同温度炭化处理后拉伸力学性能的变化规律。对试件拉伸实验后的破坏断口进行了宏观和微观分析, 探讨了材料的变形和破坏机理。实验结果表明: 随炭化处理温度的增加, 三维五向碳/酚醛编织复合材料的纵向、 横向拉伸强度和拉伸模量均呈先降后升的趋势, 存在一个转折温度, 超过该温度, 材料的拉伸强度和拉伸模量从下降变为上升, 但拉伸模量的变化幅度较小; 但是, 随着炭化温度的升高, 材料的破坏应变是逐渐降低的。通过形貌观察和树脂热分解机理分析, 认为在不同的炭化处理温度下, 材料的细观组织结构演变存在明显的差异, 因此造成了材料力学性能的变化。   相似文献   

10.
通过对三维四向编织复合材料薄板试件的宏观压缩破坏实验及其声发射信号的分析, 研究了该材料的抗压力学性能及其失效机理。实验结果表明: 材料的编织角对其压缩力学性能的影响很大, 随编织角的变化, 编织复合材料的压缩破坏机制发生了变化, 编织角小时, 材料表现为脆性特征; 当编织角大于某个临界角时, 材料的应力-应变曲线趋于非线性, 更多地表现为屈曲破坏。试验过程中采集到的声发射信号能有效地监测材料内部损伤演化过程。   相似文献   

11.
重组竹轴向应力-应变关系模型   总被引:2,自引:0,他引:2       下载免费PDF全文
以重组竹为对象,对重组竹的轴向拉伸与压缩应力-应变关系进行研究。通过单向轴向拉伸与压缩试验,研究了重组竹的破坏形态与应力-应变关系特征。试验结果表明:重组竹拉伸的破坏模式表现为脆性拉断,受压破坏模式表现为压屈破坏、剪压破坏和楔形劈裂破坏;重组竹轴向拉伸的应力-应变关系呈线性变化,其受压应力-应变曲线可分为弹性阶段、弹塑性阶段和平台阶段3个阶段。对于重组竹轴向受拉应力-应变关系,建议了线弹性关系模型;对于重组竹轴向受压应力-应变关系,建议了三折线模型、通用函数模型、指数函数模型3个模型,其皆能描述重组竹轴向受压时应力-应变曲线的三个阶段。各个模型的计算结果与试验结果总体吻合度均较好。  相似文献   

12.
目的研究泡沫铝孔径(泡沫铝内部孢孔直径)对泡沫铝压缩性能的影响,并对泡沫铝、聚氨酯(PU)、泡沫铝-聚氨酯复合材料的压缩性能和吸能性能进行对比分析。分析泡沫铝孔隙率、聚氨酯含量对泡沫铝-聚氨酯复合材料压缩性能和吸能性能的影响规律。方法对试样进行准静态压缩试验。结果通过准静态压缩试验,分别得出了对应的应力-应变曲线,并通过应力-应变曲线推导出吸能-应变曲线。结论从试验所得的应力-应变曲线和吸能-应变曲线可知,泡沫铝压缩性能、吸能性能随着泡沫铝孔径的增加而变好,且在泡沫铝中加入聚氨酯形成泡沫铝-聚氨酯复合材料后,其压缩性能、吸能性能相对于单纯泡沫铝、聚氨酯有很大提升。当泡沫铝孔隙率一定时,泡沫铝-聚氨酯复合材料的压缩性能、吸能性能会随着聚氨酯含量的增加而变好。当聚氨酯含量一定时,泡沫铝-聚氨酯复合材料的压缩性能、吸能性能会随着泡沫铝孔隙率的减小而变好。  相似文献   

13.
PES/PVC膜材料拉伸性能的各向异性及破坏准则   总被引:9,自引:0,他引:9       下载免费PDF全文
以PES/PVC膜材料单轴向拉伸试验为研究基础,对膜材料的0°、15°、30°、45°、60°、75°和90°七个面内方向上的拉伸试验特征进行了分析,证明了采用三次加载后的应力-应变曲线可以用来描述膜材料的弹性力学性质,且测得的膜材料弹性常数符合正交各向异性本构关系。为获得膜材料在复杂应力状态下的断裂强度,对膜材料拉伸断裂破坏的机理及适用的相关强度准则进行了讨论。结果表明,利用Tsai-Hill强度准则能对纯拉或纯剪切型破坏模式下的膜材料断裂强度做出较好的预测,但该准则不适合对拉剪混合型破坏模式下膜材料断裂强度的预测。   相似文献   

14.
目的 以发泡聚丙烯为研究对象,研究厚度和密度对发泡聚丙烯静态压缩性能的影响规律。方法 通过静态压缩试验,得出不同密度和厚度下的力-位移曲线,进一步处理得到应力-应变曲线、能量吸收效率曲线以及比吸能、总能量吸收图和抗压强度。通过这些曲线分析密度和厚度对发泡聚丙烯材料静态压缩性能的影响。结果 密度、厚度不同的发泡聚丙烯材料,其应力-应变曲线的形态基本相同。当厚度一定时,密度越大,总能量吸收、比吸能及抗压强度也越高。当密度一定时,材料越厚,其总能量吸收越高、比吸能越低,厚度对密实化应变和抗压强度的影响可忽略。结论 在对缓冲包装进行优化设计时,为了防止出现过度包装导致资源浪费或欠包装导致被包装物出现损毁等情况,应充分比较泡沫材料的厚度和密度对缓冲和吸能性能的影响,并根据试验对比结果选择最优方案。  相似文献   

15.
Compressive properties of mesophase pitch-based carbon fibres (NT-20, NT-40 and NT-60) were measured using the tensile recoil test and the elastica loop test. The NT-40 fibre with a 400 GPa tensile modulus showed a smaller loop compressive yield strain and a larger recoil compressive strength compared to these values obtained from the longitudinal compression test on its unidirectional composites. Further, the recoil compressive strength of this fibre was higher than that of PAN-based carbon fibre with a corresponding modulus. Under the ideal conditions in the tensile recoil test, the strain energy was conserved before and after recoil, and the initial tensile stress and the recoil compressive stress do not coincide when fibre stress-strain behaviour is non-linear, and the non-linearity in compression and in tension is different. The difference between the composite compressive strength and the recoil compressive strength of NT-40 was quantitatively explained by taking account of the fibre compressive stress-strain non-linear relation. The difference between the loop compressive yield strain and the composite compressive strain to failure was also explained by this non-linearity.  相似文献   

16.
电场作用下电流变液的拉伸、压缩和剪切特性   总被引:1,自引:1,他引:0       下载免费PDF全文
对外加直流电场作用下电流变液的拉伸、压缩和剪切特性进行了实验研究。实验结果表明,在外电场作用下,电流变液的压缩强度比剪切强度约高一个数量级,压缩强度是拉伸强度的2~3倍。压缩弹性模量约与压缩过程中电场强度的三次方成正比。压缩应力与电流变液本身性能、外加电压大小和压缩应变都有密切关系。拉伸屈服应力为剪切屈服应力的拉伸屈服应力和剪切屈服应力的3~4倍,据此计算得到剪切屈服应变角度在15°~18.5°之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号