首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Speckle-motion artifact under tissue shearing   总被引:2,自引:0,他引:2  
Research has shown that, for a rotating phantom, the speckle pattern may not replicate the phantom motion, rather it may show a large lateral translation component in addition to rotation. This translation effect was labeled speckle-motion artifact. An image formation model has been shown to explain the phenomenon, pointing to the curvature of the imaging system point spread function (PSF) at the origin of this effect. The present paper extends this analysis and proposes a model, which predicts that a lateral motion artifact also would occur with shear motion. In the model, the artifact is found to be proportional to the shear angle and dependent of shear orientation, being maximal for shear that runs parallel to the axial direction; as for rotation, the artifact increases with frequency and beamwidth. This would mean that, when viewing a parabolic flow in the far field or with a highly curved PSF, an apparent contraction/expansion pattern in the direction of the vessel wall would be superimposed to the real velocity profile. In elastography, when viewing an inclusion subjected to an axial strain, four motion artifact regions are expected near the inclusion. The model is developed using the Fourier domain representation of the speckles for tissue-motion compensated signals, also called Lagrangian speckle. It can explain the artifact in terms of a simple spectral translation of a parabolic phase profile; given this, it is shown the artifact would be proportional to the lateral derivative of the axial displacement field. The spectral representation of Lagrangian speckle, for shear, also provides a simple geometrical interpretation for speckle decorrelation in terms of the shear strength and orientation, and in terms of the beam characteristics, i.e., the axial and lateral bandwidth.  相似文献   

2.
在磁共振成像过程中由于患者的运动会在图像中造成运动伪影,从而造成图像的退化,严重影响临床诊断.本文对MRI图像刚性平移运动伪影提出了一个改进的后处理方法:首先用谱平移理论消除频率编码方向平移运动;然后建立模糊模型表示图像的背景并对其进行抑制,用数学形态学的方法确定图像的支撑域;最后以能量熵为收敛准则,用相位恢复算法对频率编码方向残余的子像素移动造成的伪影和相位编码方向的伪影进行消除.实验表明,应用本研究提出的方法能够明显地消除图像空间运动造成的伪影.  相似文献   

3.
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously.  相似文献   

4.
Shin SH  Javidi B 《Applied optics》2002,41(14):2644-2649
We propose a method to implement a speckle-reduced coherent three-dimensional (3D) display system by a combination of integral imaging and photorefractive volume holographic storage. The 3D real object is imaged through the microlens array and stored in the photorefractive crystal. During the reconstruction process a phase conjugate reading beam is used to minimize aberration, and a rotating diffuser located on the imaging plane of the lens array is employed to reduce the speckle noise. The speckle-reduced 3D image with a wide viewing angle can be reconstructed by use of the proposed system. Experimental results are presented and optical parameters of the proposed system are discussed in detail.  相似文献   

5.
An elasticity microscope images tissue stiffness at fine resolution. Possible applications include dermatology, ophthalmology, pathology, and tissue engineering. In addition, if the resolution approaches cellular dimensions, then this system may be very useful in understanding tissue micromorphology. Elasticity images can be reconstructed from displacement and strain fields measured throughout the specimen during controlled external loading. High frequency ultrasound is used to obtain these images by tracking coherent speckle motion during deformation. In this paper, methods are presented to track speckle in two dimensions with near unity correlation coefficients using a high frequency, single element focused transducer. These techniques include improved means for speckle tracking. Procedures to control boundary conditions for consistent specimen deformation and scanning techniques required to obtain a plane-strain state in the imaging plane are also discussed. To test these methods, a 50 MHz elasticity microscope was constructed  相似文献   

6.
Li J  Ku G  Wang LV 《Applied optics》2002,41(28):6030-6035
Ultrasound-modulated optical tomography based on the measurement of laser-speckle contrast was investigated. An ultrasonic beam was focused into a biological-tissue sample to modulate the laser light passing through the ultrasonic column inside the tissue. The contrast of the speckle pattern formed by the transmitted light was found to depend on the ultrasonic modulation and could be used for imaging. Variation in the speckle contrast reflected optical inhomogeneity in the tissue. With this technique, two-dimensional images of biological-tissue samples of as much as 25 mm thick were successfully obtained with a low-power laser. The technique was experimentally compared with speckle-contrast-based, purely optical imaging and with parallel-detection imaging techniques, and the advantages over each were demonstrated.  相似文献   

7.
Yurlov V  Lapchuk A  Yun S  Song J  Yang H 《Applied optics》2008,47(2):179-187
The theory of speckle noise in a scanning beam is presented. The general formulas for the calculation of speckle contrast, which apply to any scanning display, are obtained. It is shown that the main requirement for successful speckle suppression in a scanning display is a narrow autocorrelation peak and low sidelobe level in the autocorrelation function of the complex amplitude distribution across a scanning light beam. The simple formulas for speckle contrast for a beam with a narrow autocorrelation function peak were obtained. It was shown that application of a diffractive optical element (DOE) with a Barker code phase shape could use only natural display scanning motion for speckle suppression. DOE with a Barker code phase shape has a small size and may be deposited on the light modulator inside the depth of the focus of the reflected beam area, and therefore, it does not need an additional image plane and complicated relay optics.  相似文献   

8.
罗林  沈忙作 《光电工程》2005,32(10):47-50
在详细分析用斑点成像消除目标图像中随机扰动影响的基础上,提出了在有像差光学系统中,应用斑点成像消除图像中像差影响的方法。通过在光学系统的光路中引入随机相位屏,采集物的短曝光像,用斑点成像处理,恢复目标图像的功率谱和相位谱,可以得到目标近衍射极限的图像。实验结果表明,这种方法可以消除图像中光学系统像差的影响。  相似文献   

9.
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO(2) lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level.  相似文献   

10.
11.
Matoba O  Sawasaki T  Nitta K 《Applied optics》2008,47(24):4400-4404
An optical system for authentication using a 3D (3D) random phase object with various wavelength readouts is proposed. The 3D phase object without surface modulation is secure when the scattering is strong enough because it prevents from the interferometric measurement. The identification is implemented by the correlation between a measured speckle pattern of the 3D phase object and stored speckle patterns. For accurate identification, two speckle patterns of the 3D object obtained by illuminating two wavelengths are used. Experimental demonstrations and numerical evaluations of wavelength selectivity are presented.  相似文献   

12.
We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement.  相似文献   

13.
E. Hack  A. Schumacher 《Strain》2007,43(3):235-239
Abstract: This paper presents 3D electronic speckle pattern interferometry (ESPI) measurement results of strain components at the end of a carbon‐fibre reinforced polymer (CFRP) plate adhesively bonded to a reinforced concrete beam. To minimise speckle decorrelation because of the inevitable rigid‐body motion of the measured specimen, the load was increased in small increments. Two evaluation schemes are compared: the step‐by‐step addition of the measured displacement components and regain of the correlation by image shifting. Strain is evaluated by interpolating the in‐plane displacement measurements along selected lines, and is compared with results from finite element analysis (FEA). An uncertainty estimate is given.  相似文献   

14.
This article describes a new angle-independent method suitable for three-dimensional (3-D) blood flow velocity measurement that tracks features of the ultrasonic speckle produced by a pulse echo system. In this method, a feature is identified and followed over time to detect motion. Other blood flow velocity measurement methods typically estimate velocity using one- (1-D) or two-dimensional (2-D) spatial and time information. Speckle decorrelation due to motion in the elevation dimension may hinder this estimate of the true 3-D blood flow velocity vector. Feature tracking is a 3-D method with the ability to measure the true blood velocity vector rather than a projection onto a line or plane. Off-line experiments using a tissue phantom and a real-time volumetric ultrasound imaging system have shown that the local maximum detected value of the speckle signal may be identified and tracked for measuring velocities typical of human blood flow. The limitations of feature tracking, including the uncertainty of the peak location and the duration of the local maxima are discussed. An analysis of the expected error using this method is given  相似文献   

15.
Digital holography is an imaging technique that enables recovery of topographic 3D information about an object under investigation. In digital holography, an interference pattern is recorded on a digital camera. Therefore, quantization of the recorded hologram is an integral part of the imaging process. We study the influence of quantization error in the recorded holograms on the fidelity of both the intensity and phase of the reconstructed image. We limit our analysis to the case of lensless Fourier off-axis digital holograms. We derive a theoretical model to predict the effect of quantization noise and we validate this model using experimental results. Based on this, we also show how the resultant noise in the reconstructed image, as well as the speckle that is inherent in digital holography, can be conveniently suppressed by standard speckle reduction techniques. We show that high-quality images can be obtained from binary holograms when speckle reduction is performed.  相似文献   

16.
The quality of images computed from digital holograms or heterodyne array imaging is degraded by phase errors in the object and/or reference beams at the time of measurement. This paper describes computer simulations used to compare the performance of digital shearing laser interferometry and various sharpness metrics for the correction of such phase errors when imaging a diffuse object. These algorithms are intended for scenarios in which multiple holograms can be recorded with independent object speckle realizations and a static phase error. Algorithm performance is explored as a function of the number of available speckle realizations and signal-to-noise ratio (SNR). The performance of various sharpness metrics is examined in detail and is shown to vary widely. Under ideal conditions with >15 speckle realizations and high SNR, phase corrections better than lambda/50 root-mean-square (RMS) were obtained. Corrections better than lambda/10 RMS were obtained in the high SNR regime with as few as two speckle realizations and at object beam signal levels as low as 2.5 photons/speckle with six speckle realizations.  相似文献   

17.
Ultrasound strain imaging has been proposed to quantitatively assess myocardial contractility. Cross-correlation-based 2-D speckle tracking (ST) and auto-correlation-based tissue Doppler imaging (TDI) [often called Doppler tissue imaging (DTI)] are competitive ultrasound techniques for this application. Compared with 2-D ST, TDI, as a 1-D method, is sensitive to beam angle and suffers from low strain signal-to-noise ratio because a high pulse repetition frequency is required to avoid aliasing in velocity estimation. In addition, ST and TDI are fundamentally different in the way that physical parameters such as the mechanical strain are derived, resulting in different estimation accuracy and interpretation. In this study, we directly compared the accuracy of TDI and 2-D ST estimates of instantaneous axial normal strain and accumulated axial normal strain using a simulated heart. We then used an isolated rabbit heart model of acute ischemia produced by left descending anterior artery ligation to evaluate the performance of the two methods in detecting abnormal motion. Results showed that instantaneous axial normal strains derived using TDI (0.36% error) were less accurate with larger variance than those derived from 2-D ST (0.08% error) given the same spatial resolution. In addition to poorer accuracy, accumulated axial normal strain estimates derived using TDI suffered from bias, because the accumulation method for TDI cannot trace along the actual tissue displacement path. Finally, we demonstrated the advantage 2-D ST has over TDI to reduce dependency on beam angle for lesion detection by estimating strains based on the principal stretches and their corresponding principal axes.  相似文献   

18.
We describe a new method, called ensemble tracking, for estimating two-dimensional velocities with ultrasound. Compared to previous speckle tracking techniques, ensemble tracking measures motion over smaller times and distances, increasing maximum velocities and reducing errors due to echo decorrelation. Ensemble tracking uses parallel receive processing, 2D pattern matching, and interpolation of the resulting tracking grid to estimate sub-pixel speckle translations between successive ultrasonic acquisitions. In this study, small translations of a tissue mimicking phantom were quantified at transducer angles of 0 degrees , 45 degrees , and 90 degrees . Measurements over three parallel beam spacings and all transducer angles had mean errors from -4% to +11%, when parallel beam amplitudes were normalized. Such amplitude normalization substantially improved results at 45 degrees and 90 degrees . The amplitude, spacing, and correlation between the parallel beams were quantified, and their effects on the accuracy and precision of estimates are discussed. Finally, initial clinical results demonstrate the ability to track and display blood flow in the carotid artery.  相似文献   

19.
Yao G  Wang LV 《Applied optics》2000,39(4):659-664
Ultrasound-modulated optical tomography in biological tissue was studied both theoretically and experimentally. An ultrasonic beam was focused into biological tissue samples to modulate the laser light passing through the ultrasonic beam inside the tissue. The ultrasound-modulated laser light reflects the local optical and mechanical properties in the ultrasonic beam and permits tomographic imaging of biological tissues by scanning. Parallel detection of the speckle field formed by the transmitted laser light was implemented with the source-synchronous-illumination lock-in technique to improve the signal-to-noise ratio. Two-dimensional images of biological tissues were successfully obtained experimentally with a laser beam at either normal or oblique incidence, which showed that ultrasound-modulated optical tomography depends on diffuse light rather than on ballistic light. Monte Carlo simulations showed that the modulation depth decreased much more slowly than the diffuse transmittance, which indicated the possibility that even thicker biological tissues can be imaged with this technique.  相似文献   

20.
We demonstrate through a series of simulations that by parameterizing the temporal speckle contrast statistic from a sequence of translating speckle images on a number of experimental constants, the local temporal contrast can be used to quantitatively assess local motion, provided that the spatial and temporal Nyquist sampling criteria are both met. We develop a simple exponential model for quantifying speckle motion for speckle patterns that display arbitrary intensity statistics and provide suggestions for optimizing both the experimental acquisition of speckle data and the temporal contrast analysis of the data. The confounding effects of uncorrelated noise are also discussed. The model is demonstrated by applying it to an optical coherence tomography image sequence of an engineered tissue construct undergoing dynamic compression. Applications to tissue mechanics are shown, although the discussion is equally relevant for fluid motion studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号