首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests.  相似文献   

2.
A model to predict time-dependent evolution of simultaneous transverse cracking developed in multiple plies during creep loading and its effects on creep of multidirectional polymer matrix composite laminates is presented. The stress states in the intact regions of the plies are determined using the lamination theory during an incremental change in time. The stored elastic energy, determined using this stress state, is compared with a critical stored elastic energy value for damage to determine if a ply would fracture after the increment. If fracture is predicted, variational analysis is used to determine the perturbation in ply stresses due to cracking. This procedure is repeated to determine the crack evolution and creep strain. Model predictions compared well with experimental results for a [±θm/90n]s laminate.  相似文献   

3.
Long–term behaviour of some heat resistant steels under service–type creep–fatigue loading The long-term creep-fatigue behaviour of four heat resistant steels is investigated by service-type strain cycling with test durations up to 30 000 h. The creep-fatigue life is analysed on the basis of the generalized damage accumulation rule. The influences of prior service-type strain cycling on the basic creep and fatigue properties are taken into account.  相似文献   

4.
The paper illustrates the preliminary activity of an extensive research program oriented to investigate the multiaxial fatigue behaviour of unidirectional composite laminates, with particular attention to the analysis of the damage mechanisms and their correlation with the local multiaxial stress state to be used then as the basis for the development of multiaxial fatigue criterion. The definition of an effective experimental procedure for multiaxial fatigue testing is carefully discussed in terms of specimen geometry, specimen manufacturing and local stress state. Once identified in the thin-walled tubular specimens under tension–torsion loading the best test configuration for the aims of the research, the results of comparative fatigue tests investigating the influence of the tubes geometry (wall thickness to diameter ratio) on the transverse fatigue response are presented. In the final part of the paper the effects of an increasing shear stress component (σ6) on the transverse (σ2) fatigue strength and damage evolution in UD glass–epoxy tubes are illustrated.  相似文献   

5.
The long term behaviour of ±45°-angle-ply laminates of carbon/epoxy was studied. Due to the absence of 0°-layers angle-ply laminates are subject to cyclic creep. To investigate the time dependent behaviour, creep tests and constant amplitude fatigue tests at different stress ratios were performed. The assumption that the extent of creep depends on the fatigue mean stress was verified and the interaction between creep and fatigue was determined. Based on creep strain data a general fatigue damage metric was defined and conservative service times were estimated.  相似文献   

6.
Carbon fibre reinforced polymer (CFRP) laminated composites have become attractive in the application of wind turbine blade structures. The cyclic load in the blades necessitates the investigation on the flexural fatigue behaviour of CFRP laminates. In this study, the flexural fatigue life of the [+45/−45/0]2s CFRP laminates was determined and then analysed statistically. X-ray microtomography was conducted to quantitatively characterise the 3D fatigue damage. It was found that the fatigue life data can be well represented by the two-parameter Weibull distribution; the life can be reliably predicted as a function of applied deflections by the combined Weibull and Sigmodal models. The delamination at the interfaces in the 1st ply group is the major failure mode for the flexural fatigue damage in the CFRP laminate. The calculated delamination area is larger at the interfaces adjacent to the 0 ply. The delamination propagation mechanism is primarily matrix/fibre debonding and secondarily matrix cracking.  相似文献   

7.
An extensive experimental program has been carried out to investigate and understand the sequence of damage development throughout the life of bolted-hole composite laminates under quasi-static loading and tension–tension fatigue. Quasi-isotropic carbon/epoxy laminates, with stacking sequence [452/902/-452/02]S defined as ply scaled and [45/90/-45/0]2S defined as sub-laminate scaled, were used. Specimens were cycled at 5 Hz with various amplitudes to 1 × 106 cycles unless failure occurred prior to this limit. For all cases an R ratio of 0.1 was used. Bolt washer pressures of 23 MPa and 70 MPa were investigated. For the ply-level case, the quasi-static test showed both delamination and fibre-dominated pull-out failures for a washer pressure of 23 MPa, and pull-out failure only for 70 MPa. Delamination dominates in fatigue tests. For the sub-laminate case the tests failed by pull-out in both quasi-static and fatigue tests for all washer pressures. It is shown in this paper how the role of delamination is critical in the case of fatigue loading and how this interacts with bolt clamp-up forces. A number of tests were analysed for damage using X-ray CT scanning and comparisons of damage are made with tests from previous open-hole studies.  相似文献   

8.
The ratcheting behaviour of a bainite 2.25Cr1MoV steel was studied with various hold periods at 455°C. Particular attention was paid to the effect of stress hold on whole‐life ratcheting deformation, fatigue life, and failure mechanism. Results indicate that longer peak hold periods stimulate a faster accumulation of ratcheting strain by contribution of creep strain, while double hold at peak and valley stress has an even stronger influence. Creep strains produced in peak and valley hold periods are noticeable and result in higher cyclic strain amplitudes. Dimples and acquired defects are found in failed specimen by microstructure observation, and their number and size increase under creep‐fatigue loading. Enlarged cyclic strain amplitude and material deterioration caused by creep lead to fatigue life reduction under creep‐fatigue loading. A life prediction model suitable for asymmetric cycling is proposed based on the linear damage summation rule.  相似文献   

9.
10.
The use of externally bonded carbon fiber-reinforced polymer (EB-CFRP) to strengthen deficient reinforced concrete (RC) beams has gained in popularity and has become a viable and cost-effective method. Fatigue behavior of RC beams strengthened with FRP is a complex issue due to the multiple variables that affect it (applied load range, frequency, number of cycles). Very few research studies have been conducted in shear under cyclic loading. The use of prefabricated CFRP L-shaped laminates (plates) for strengthening RC beams under static loading has proven to be technically feasible and very efficient. This study aimed to examine the fatigue performance of RC T-beams strengthened in shear for increased service load using prefabricated CFRP L-shaped laminates. The investigation involved six laboratory tests performed on full-size 4520 mm-long T-beams. The specimens were subjected to fatigue loading up to six million load cycles at a rate of 3 Hz. Two categories of specimens (unstrengthened and strengthened) and three different transverse-steel reinforcement ratios (Series S0, S1, and S3) were considered. Test results were compared with the upper fatigue limits specified by codes and standards. The specimens that did not fail in fatigue were then subjected to static loading up to failure. The test results confirmed the feasibility of using CFRP L-shaped laminates to extend the service life of RC T-beams subjected to fatigue loading. The overall response was characterized by an accelerated rate of damage accumulation during the early cycles, followed by a stable phase in which the rate slowed significantly. In addition, the strains in the stirrups decreased after the specimens were strengthened with CFRP, despite the higher applied fatigue loading. Moreover, the addition of L-shaped laminates enhanced the shear capacity of the specimens and changed the failure mode from brittle to ductile under static loading. Finally, the presence of transverse steel in strengthened beams resulted in a substantially reduced gain in shear resistance due to CFRP, confirming the existence of an interaction between the transverse steel and the CFRP.  相似文献   

11.
The electro-mechanical response (Electrical Resistance Change method) as a damage index of quasi-isotropic Carbon Fiber Reinforced (CFRPs) laminates under fatigue loading was investigated. The effect of dispersed Multi-Wall Carbon Nanotubes (MWCNT) into the epoxy matrix was additionally evaluated and compared with neat epoxy CFRPs. The longitudinal resistance change of the specimens was monitored throughout the fatigue experiment. Three different stress levels were tested. The frequency and the ratio (R) of the minimum applied load (stress) to the maximum applied load (stress) were kept constant for the different stress levels. The temperature of the specimen was also monitored throughout the process in order to deduce its effect on the electrical resistance of the specimen. The electrical behavior of the quasi-isotropic CFRP deviated from the commonly observed electrical response of unidirectional or cross-ply CFRPs due to the presence of the 45° layers. During initial stages of loading the resistance drops and afterwards it follows a positive slope up to final fracture. This repeatable pattern was observed for both the neat and the CNT-doped specimens, with the latter having smoother electrical recordings. The effect of temperature was calculated to be limited for the specific material and test/measurement configuration. The electro-mechanical response was correlated to stiffness degradation and acoustic emission findings enabling the identification of the specific regions during the fatigue life referring to specific mechanisms of damage accumulation. More specifically the experimental results revealed that the occurrence of the initial drop of the electrical resistance is linked with the occurrence of the Characteristic Damage State (CDS), associated with a specific percentage of stiffness reduction. This finding was used in order to predict the remaining life independently from the applied stress level with a high degree of confidence, assuming a constant stress level throughout the whole lifetime. The remaining life prediction for the CNT-doped specimens had higher coefficient of confidence (R2).  相似文献   

12.
The characterisation of the damage state of composite structures is often performed using the acoustic behaviour of the composite system. This behaviour is expected to change significantly as the damage is accumulating in the composite. It is indisputable that different damage mechanisms are activated within the composite laminate during loading scenario. These “damage entities” are acting in different space and time scales within the service life of the structure and may be interdependent. It has been argued that different damage mechanisms attribute distinct acoustic behaviour to the composite system. Loading of cross-ply laminates in particular leads to the accumulation of distinct damage mechanisms, such as matrix cracking, delamination between successive plies and fibre rupture at the final stage of loading. As highlighted in this work, the acoustic emission activity is directly linked to the structural health state of the laminate. At the same time, significant changes on the wave propagation characteristics are reported and correlated to damage accumulation in the composite laminate. In the case of cross ply laminates, experimental tests and numerical simulations indicate that, typical to the presence of transverse cracking and/or delamination, is the increase of the pulse velocity and the transmission efficiency of a propagated ultrasonic wave, an indication that the intact longitudinal plies act as wave guides, as the transverse ply deteriorates. Further to transverse cracking and delamination, the accumulation of longitudinal fibre breaks becomes dominant causing the catastrophic failure of the composite and is expected to be directly linked to the acoustic behaviour of the composite, as the stiffness loss results to the velocity decrease of the propagated wave. In view of the above, the scope of the current work is to assess the efficiency of acoustic emission and ultrasonic transmission as a combined methodology for the assessment of the introduced damage and furthermore as a structural health monitoring tool.  相似文献   

13.
A fatigue life to the initiation of transverse cracks in cross-ply carbon fiber-reinforced plastic (CFRP) laminates has been predicted using properties of the fatigue strength of unidirectional CFRP in the 90° direction. In the experiments, unidirectional [90]12 laminates were used to obtain a plot of maximum stress versus number of cycles to breaking, and two types of cross-ply laminates of [0/904]S and [0/906]S were used to evaluate the initiation and multiplication of transverse cracks under fatigue loading. Transverse cracks were studied by optical microscopy and soft X-ray photography. Analytical and experimental results showed good agreement, and the fatigue life for transverse crack initiation in cross-ply laminates was predicted successfully from the fatigue strength properties of the unidirectional CFRP in the 90° direction. The prediction results showed a conservative fatigue life than the experimental results.  相似文献   

14.
The prediction of long-term fatigue life of various FRP laminates combined with resins, fibers and fabrics for marine use under temperature and water environments were performed by our developed accelerated testing methodology based on the time–temperature superposition principle (TTSP). The five kinds of FRP laminates were prepared under three water absorption conditions of Dry, Wet and Wet + Dry after molding. The three-point bending constant strain rate (CSR) and fatigue tests for these FRP laminates at three conditions of water absorption were carried out at various temperatures and loading rates. As results, the mater curves of fatigue strength as well as CSR strength for these FRP laminates at three water absorption conditions are constructed by using the test data based on TTSP. It is possible to predict the long-term fatigue life for these FRP laminates under an arbitrary temperature and water absorption conditions by using the master curves. The characteristics of time, temperature and water absorption dependencies of flexural CSR and fatigue strengths of these FRP laminates are clarified.  相似文献   

15.
Intralaminar and interlaminar fatigue crack growth behaviours under mode I loading were investigated with conventional and interlayer toughened unidirectional CFRP laminates. For intralaminar crack growth tests, initial defects were introduced using “intralaminar film insertion method”, in which a release film is inserted inside a single lamina prepreg. A fatigue test under a constant maximum energy release rate, Gmax, was carried out using DCB specimens. It was found that the intralaminar fatigue crack growth property of the interlayer toughened CFRP laminates was the same as that of the conventional CFRP laminates. For the interlayer toughened CFRP laminates, the Gmax with a given crack growth rate, da/dN, was much lower for intralaminar crack growth than for interlaminar crack growth. The da/dN-Gmax curve at zero crack extension, Δa = 0, which was estimated by extrapolating the da/dNa relationship, was not affected by bridging fibres, and most conservative for the interlayer toughened CFRP laminates.  相似文献   

16.
Influence of load- and deformation-controlled multiaxial tests on fatigue life to crack initiation Generally, areas of components with notches or geometrical transitions are critical because of the resulting stress/strain concentrations. In these areas due to the stress-gradients and constraint local deformations are displacement controlled even if the material's yield stress is exceeded, as long as the deformations are below the structural yield point. Therefore, load controlled tests in the elasto-plastic region with unnotched specimens from ductile materials under combined axial loading and torsion are not suitable for the interpretation of component's behaviour because of uncontrolled local deformations. Thus, the influence of multiaxial stress/strain states on the fatigue behaviour of a component under elasto-plastic deformations can be determined reliably with unnotched specimens only by deformation controlled tests, if cyclic creep is not expected in critical areas.  相似文献   

17.
A model has been developed for the modulus reduction of cross-ply Kevlar laminates under static loading as a function of applied strain. The effects of strain-rate and temperature have also been considered. The ‘stiffening’ of Kevlar fibres and Kevlar fibre-epoxy (KFRP) laminates under creep or fatigue conditions has been modelled using a kinetic approach. This has enabled stiffening effects to be subtracted out of the residual modulus-with-cycles behaviour of cross-ply KFRP laminates under fatigue loading, leaving a modulus-reduction-with-cycles curve which reflects the damage due to matrix cracking. The analyses compare well with experimental data reported in Part 1.  相似文献   

18.
Glass fibre reinforced polymer (GFRP) pultruded profiles have been increasingly used in civil engineering structural applications in the past few decades owing to their high strength, low weight and corrosion resistance. Nevertheless, the low material moduli, which makes design most often governed by deformability and instability phenomena, the brittle failure mechanisms and the high initial costs, have been delaying their widespread use. Hybrid GFRP–concrete structural solutions have been proposed to overcome the aforementioned limitations, namely the low material moduli. Furthermore, GFRP material creep models suggest that such hybrid structures may reduce the creep deformations when compared to full GFRP structures. In this context, this paper presents experimental and analytical investigations about the creep behaviour of a hybrid GFRP–concrete footbridge comprising two I-shaped GFRP pultruded profiles and a thin deck made of steel fibre reinforced self-compacting concrete (SFRSCC). The experiments comprised flexural creep tests on a 6.0 m long footbridge prototype subjected to a uniformly distributed load for up to 2642 h, during which deflections and axial deformations were monitored. In order to assess the influence of loading and environmental conditions on the creep behaviour of the structural system, the prototype was tested for three different combinations of load levels and seasons. Experimental results showed that (i) GFRP–concrete hybrid structures lead to a considerable decrease of the creep deformations of GFRP structures and that (ii) environmental conditions significantly influence the viscoelastic response of these hybrid structures. The models proposed, based on the creep response of the constituent materials, were able to predict the observed structural response for the different load levels and environmental conditions with very good accuracy. Therefore, they are proposed to predict the long-term response of GFRP–concrete structures instead of empirical models based on short-term experimental data.  相似文献   

19.
The present study focuses on the characterisation and evaluation of the fatigue behaviour of flax–epoxy composites. A better understanding of this behaviour allows the prediction of long-term properties to assess the viability and long-term durability of these materials. The purpose of this work is to systematically compare the tension–tension fatigue behaviour of flax fibre composites for one random mat, six textile architectures and two laminate configurations, which are used in a wide range of applications. The fibre architecture was found to have a strong effect on the fatigue behaviour, where higher static strength and modulus combinations present the best fatigue characteristics. They have a delayed damage initiation and increased fatigue life as well as a reduced damage propagation rate combined with higher energy dissipation in the early stages of fatigue loading.  相似文献   

20.
The research dealt with the relation between damage and tension–tension fatigue residual strength (FRS) in a quasi-isotropic carbon fibre reinforced epoxy resin laminate. The work was organized in two phases: during the first one, composite laminates were damaged by means of an out-of-plane quasi-static load that was supposed to simulate a low velocity impact; in the second phase, fatigue tests were performed on damaged and undamaged specimens obtained from the original composite laminates. During the quasi-static transverse loading phase, damage progression was monitored by means of acoustic emission (AE) technique. The measurement of the strain energy accumulated in the specimens and of the acoustic energy released by fracture events made it possible to estimate the amount of induced damage and evaluate the quasi-static residual tensile strength of the specimens. A probabilistic failure analysis of the fatigue data, reduced by the relative residual strength values, made it possible to relate the FRS of damaged specimens with the fatigue strength of undamaged ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号