首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In recent years, there has been a significant increase in molecularly imprinted solid-phase extraction (MISPE) technique for the purification and clean-up of environmental samples. In this study, solid-phase extraction using the imprinted polymer has been optimized with the experimental design approach for a triazine herbicide, named ametryn with regard to the critical factors such as sample pH, sample concentration, sample flow-rate, sample volume, elution solvent, washing solvent and sorbent mass. These factors were evaluated statistically and also validated with spiked drinking water samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. Also, in order to the evaluate efficiency of the optimized MISPE protocols, enrichment capacity, reusability and cross-reactivity of cartridges have been studied. Finally, a selective MISPE was successfully demonstrated for ametryn with a recovery of above 90% for spiked drinking water samples. It was concluded that the central composite design could prove beneficial for aiding the MIP and MISPE development.  相似文献   

2.
The simplicity and flexibility of solid-phase microextraction have been combined with the selectivity of molecularly imprinted polymers (MIPs). Silica fibers were coated reproducible with a 75-microm layer of methacrylate polymer either nonimprinted or imprinted with clenbuterol to compare their extraction characteristics under various conditions. Although the template molecule could be removed effectively from the imprinted polymer, structural analogues of clenbuterol were used for evaluation. The influence of pH on the extractability of brombuterol was investigated. Extraction yields up to approximately 80% were obtained when both types of fibers were used to extract brombuterol from phosphate buffer (pH 7.0). In contrast, yields of about 75 and <5% were obtained when extraction was performed from acetonitrile with imprinted and nonimprinted polymers, respectively, which demonstrates the selectivity of the MIP-coated fiber. Time sorption profiles were measured for the extraction of brombuterol from buffer and acetonitrile at the 10 and 100 ng/mL level with both types of fibers in order to compare extraction characteristics. Equilibrium times of about 30 and 90 min were found for the extraction of brombuterol from acetonitrile and buffer, respectively. The MIP-coated fibers were capable of extracting five structural analogues of clenbuterol from both buffer and acetonitrile, which suggests that the amine alcohol part of these molecules is responsible for interaction with the imprinted polymer. To achieve selective extraction of brombuterol from human urine, MIP-coated fibers were washed with acetonitrile after the extraction. Clean extracts and yields of approximately 45% were obtained, demonstrating the suitability of MIP-coated fibers for the analysis of biological samples.  相似文献   

3.
A molecularly imprinted polymer (MIP) able to bind 4-nitrophenol (4-NP) was prepared using noncovalent molecular imprinting methods and evaluated as a selective sorbent in molecularly imprinted solid-phase extraction (MISPE) on-line coupled to a reversed-phase HPLC. It has been shown that the conditions chosen for washing the MIP and for eluting the analyte in the MISPE process are extremely important for ensuring good selectivity and recovery. River water samples, spiked with the 11 Environmental Protection Agency phenolic compounds at microgram per liter levels, were preconcentrated on-line using this MIP, and 4-NP was selectively extracted. The humic acid interference was simultaneously reduced considerably. The MIP was also compared with a commercially available highly cross-linked polymer (LiChrolut EN) and the former yielded cleaner extracts.  相似文献   

4.
An anti-diazepam, molecularly imprinted polymer (MIP) has been synthesized and used to extract diazepam and other benzodiazepines from hair samples via a molecularly imprinted solid-phase extraction (MISPE) protocol. Optimum retention of diazepam on the MIP columns was achieved using an apolar solvent, and the binding capacity of the polymer toward diazepam was found to be 110 ng of diazepam/mg of polymer. The recovery of a 50 ng diazepam standard spiked into blank hair was 93%, with good precision (RSD = 1.5%). The LOD and LOQ of diazepam in spiked hair samples were 0.09 and 0.14 ng/mg, respectively. The MISPE method was demonstrated to be applicable to the analysis of diazepam metabolites and other benzodiazepine drugs, in addition to diazepam itself. The application of the extraction method to postmortem hair samples yielded results that were in good agreement with the corresponding ELISA data (from blood samples) and data arising from the analysis of the same blood samples using a validated in-house SPE-LC-MS-MS method.  相似文献   

5.
An analytical methodology for the determination of triazines in environmental samples incorporating a molecularly imprinted solid-phase extraction (MISPE) process using a propazine-imprinted polymer was developed. Two different polymers were prepared using acetonitrile or toluene as porogen, and their optimum loading, washing, and elution conditions were established. Although both polymers were able to recognize several chlorotriazines (propazine, atrazine, simazine, desethylatrazine, and desisopropylatrazine), the polymer prepared in toluene showed the best performance and was also capable of recognizing a methylthiotriazine (prometryn). A binding study carried out in this polymer demonstrated that it possesses heterogeneous binding sites with different binding abilities. From this study, it was also concluded that desethylatrazine and desisopropylatrazine displace the other triazines at high concentrations, including the template molecule. The accuracy and selectivity of the MISPE process developed was verified using a certified reference material for drinking water containing atrazine and simazine among other commonly used pesticides. Finally, the MISPE procedure was successfully applied to the cleanup of drinking and groundwater, soil, and corn sample extracts, and the triazines were determined by micellar electrokinetic chromatography.  相似文献   

6.
A molecularly imprinted polymer (MIP) prepared using penicillin G procaine salt as the template (PENGp) and a stoichiometric quantity of urea-based functional monomer to target the single oxyanionic species in the template molecule has been applied to the development of a molecularly imprinted solid-phase extraction (MISPE) procedure for the selective preconcentration of beta-lactam antibiotics (BLAs) from environmental water samples. Various parameters affecting the extraction efficiency of the polymer have been evaluated to achieve the selective preconcentration of the antibiotics from aqueous samples and to reduce nonspecific interactions. This resulted in an MISPE-HPLC method allowing the direct extraction of the analytes from the sample matrix with a selective wash using just 10% (v/v) organic solvent. On the basis of UV detection only, the method showed good recoveries and precision, ranging between 93% and 100% (RSD 3.8-8.9%, n = 3) for tap water and between 90% and 100% (RSD 4.2-9.1%, n = 3) for river water fortified with 30 or 60 microg L-1 (50 mL samples) penicillin G, penicillin V, nafcillin, oxacillin, cloxacillin, and dicloxacillin, suggesting that this MIP can be successfully applied to the direct preconcentration of BLAs in environmental water samples.  相似文献   

7.
Mullett WM  Lai EP 《Analytical chemistry》1998,70(17):3636-3641
The technique of molecular imprinting is used to produce an extensively cross-linked poly(methacrylic acid-co-ethylene dimethacrylate) material that contains theophylline as a print molecule. After Soxhlet extraction of the theophylline, binding sites are formed in the polymer with complementary size, shape, and positioning of chemical functionalities. The molecularly imprinted polymer's (MIP) high theophylline selectivity, chemical stability, and physically robust nature make it an ideal stationary-phase material in columns for HPLC separation of theophylline from other structurally related drug compounds. Mobile-phase tests confirm that a retention mechanism typical of normal-phase chromatography governs the separation, and selectivity of the MIP column can be controlled by a combination of the mobile phase and the sample solvent. Under optimal conditions, the MIP column functions like a solid-phase sorbent for theophylline extraction. Rapid elution of the bound theophylline can be accomplished in a pulsed format through injection of 20 μL of a solvent that has the proper polarity and protic nature to disrupt the electrostatic interactions and hydrogen bonding between theophylline and binding sites. A concentration detection limit of 120 ng/mL is obtained using direct UV absorption detection at 270 nm, which corresponds to a mass detection limit of 2.4 ng. This new technique, molecularly imprinted solid-phase extraction with pulsed elution (MISPE-PE), permits on-line preconcentration of theophylline from a large volume of dilute sample solution. Using a sample volume of 300 μL, a 40 ng/mL standard solution produces a detectable peak signal. Application of MISPE-PE in serum analysis further demonstrates the high capability of the MIP column to selectively isolate theophylline from other matrix components for fast, accurate determination.  相似文献   

8.
Noami M  Kataoka M  Seto Y 《Analytical chemistry》2002,74(18):4709-4715
In the analysis of tert-butyldimethylsilyl derivatives (IBDMS) of alkyl methylphosphonic acids (RMPA) and methylphosphonic acid (MPA), from soils by gas chromatography/mass spectrometry (GC/MS), the detection yields are generally low, due to the suppression of TBDMS derivatization by the soil matrix components and the adsorption of RMPA and MPA to the soils. An ion-exchange pretreatment of the aqueous soil extract can be used to overcome the former factor by removing interfering compounds. A pretreatment method is described for improving the detection yields due to the latter factor, using an alkaline extraction procedure. The recovery was estimated quantitatively using capillary electrophoresis. The soil samples tested included volcanogenous immature soils and showed a low aqueous extraction recovery and GC/MS detection yields. The inclusion of sodium hydroxide in the extraction solvent dramatically increased the recovery. Using a 0.1 M sodium hydroxide solution, the recovery was in excess of 68%. Interfering components were removed from the alkaline soil extract by solid-phase extraction of the acids on a silica-based strong anion exchanger. The alkaline soil extract was neutralized with hydrofluoric acid and applied to the cartridge in the fluoride form. After washing with water, MPA and RMPA could be eluted with methanolic ammonia nearly quantitatively. Using the established pretreatment method, MPA and RMPA were detected from all the soil samples in more than 67% yield.  相似文献   

9.
Highly selective molecularly imprinted polymer (MIP) was synthesized by using methacrylic acid as functional monomer, trimethylolpropane trimethacrylate as cross-linker, chloroform as porogen and penicillin G potassium as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the selective extraction of penicillin G from the fermentation broth samples. Various parameters affecting the extraction efficiency of the MIP particles such as; effects of pH, wash and eluent solutions were evaluated. Molecular recognition properties and selectivity of these MIPs were estimated and the obtained results revealed high affinity for the target antibiotic. Equilibrium binding experiments were done to assess the performance of the MIP relative to non imprinted polymer (NIP). After optimizing the extraction parameters in molecularly imprinted solid-phase extraction (MISPE), successful imprinting was confirmed by comparison of the recoveries from the fermentation broth, ranging between 24–26% (RSD 4.1–4.5%, n = 4) for the NIPs and 83–88% (RSD 3.1–3.4%, n = 4) for the MIPs.  相似文献   

10.
Yan H  Qiao F  Row KH 《Analytical chemistry》2007,79(21):8242-8248
A novel highly selective sample cleanup procedure combining molecular imprinting and matrix solid-phase dispersion (MI-MSPD) was developed for the simultaneous isolation of ofloxacin, pefloxacin, norflorxacin, ciprofloxacin, and enrofloxacin in chicken eggs and swine tissues followed by high-performance liquid chromatography with fluorescence detection. The novel ofloxacin imprinted polymers synthesized in water-containing systems show high selectivity for the five fluoroquinolones in aqueous environment and the affinity can be easily adjusted by the pH of solution. Compared with conventional MSPD methods, using MIPs as selective MSPD sorbents, the five fluoroquinolones could be selectively extracted from a biological matrix and all matrix interferences were eliminated simultaneously. The average recoveries of the five fluoroquinolones were ranged from 85.7 to 104.6% for eggs and 86.8 to 102.7% for tissues with relative standard deviations of less than 7.0%. Detection limits for the identification of the five fluoroquinolones in eggs and tissues ranged from 0.05 to 0.09 ng/g.  相似文献   

11.
We have evaluated the feasibility of using Empore solid-phase extraction (SPE) membranes as an alternative to conventional techniques for sampling fine airborne particulate matter (PM), including nanoparticles, utilizing a scanning mobility particle sizer (SMPS) and a condensation particle counter to evaluate their efficiency for trapping fine particles in the 10-800 nm size range. The results demonstrate that the membranes can efficiently trap these particles and can then be conveniently packed into an extraction cell and extracted under matrix solid-phase dispersion (MSPD) conditions. The potential utility of sampling PM using Empore membranes followed by dynamic subcritical water extraction (DSWE) for fast, efficient, class-selective extraction of polycyclic aromatic hydrocarbons (PAHs) associated with the particles, prior to changing the solvent and analysis by GC/MS, was then explored. The performance of the method was tested using National Institute of Standards and Technology (NIST)-certified "urban dust" reference material (SRM 1649a) and real samples collected at a site in central Rome with heavy road traffic. The method appears to provide comparable extraction efficiency to that of conventional techniques and with using GC/MS, detection limits ranged in the few picograms per cubic meter level. Sampling PM by Empore membranes may reduce the risks of losses of semivolatile compounds, while allowing relatively high sampling flow rates and safe sample storage. Moreover, the combination of MSPD with DSWE permits specific fractions of the PM components to be eluted, thereby generating clean extracts and reducing both analysis time and sample manipulation.  相似文献   

12.
Two molecularly imprinted polymers were synthesized using either dichloromethane or toluene as the porogen and terbuthylazine as the template and were used as solid-phase extraction cartridges for the enrichment of six chlorotriazines (deisopropylatrazine, deethylatrazine, simazine, atrazine, propazine, and terbuthylazine) in natural water and sediment samples. The extracted samples were analyzed by liquid chromatography/diode array detection (LC/DAD). Several washing solvents, as well as different volumes, were tested for their ability to remove the matrix components nonspecifically adsorbed on the sorbents. This cleanup step was shown to be of prime importance to the successful extraction of the pesticides from the aqueous samples. The optimal analytical conditions were obtained when the MIP imprinted using dichloromethane was the sorbent, 2 mL of dichloromethane was used in the washing step, and the preconcentrated analytes were eluted with 8 mL of methanol. The recoveries were higher than 80% for all the chlorotriazines except for propazine (53%) when 50- or 100-mL groundwater samples, spiked at 1 microg/L level, were analyzed. The limits of detection varied from 0.05 to 0.2 microg/L when preconcentrating a 100-mL groundwater sample. Natural sediment samples from the Ebre Delta area (Tarragona, Spain) containing atrazine and deethylatrazine were Soxhlet extracted and analyzed by the methodology developed in this work. No significant interferences from the sample matrix were noticed, thus indicating good selectivity of the MIP sorbents used.  相似文献   

13.
A procedure based on matrix solid-phase dispersion (MSPD) for sample preparation in the analysis of some bromophenols and halogenated bisphenols in sediments and sludges has been developed. For the first time ever, MSPD was applied for the extraction of organic contaminants from sediment and sewage sludge samples. The influence of experimental conditions on the yield of the extraction process and on the efficiency of the built-in cleanup step was thoroughly evaluated. Analysis of the extracts was performed by nonaqueous capillary electrophoresis coupled with photodiode array ultraviolet detection, using large-volume sample stacking injection based on the electroosmotic flow pump as an on-column preconcentration technique. The method was applied to the analysis of real sludges from urban sewage treatment plants, as well as river and marine sediment samples.  相似文献   

14.
Supercritical fluid extraction was coupled with solid-phase extraction using octadecylsilane cartridges for the selective isolation of ultratrace levels of a drug metabolite, mebeverine alcohol, from plasma. Plasma was directly applied to the extraction cartridge, the cartridge was washed to remove protein and then extracted under supercritical conditions using CO2/5% methanol. The effluent from the extraction cell was bubbled through a small volume of 2-propanol to trap the extracted mebeverine alcohol. The effects of extraction pressure and temperature on analyte recovery were examined. The absolute recovery, selectivity, precision, and accuracy of the combined supercritical fluid extraction/solid-phase extraction approach were compared to those of conventional solid-phase extraction using gas chromatography/mass spectrometry in the selected-ion monitoring mode. Mebeverine alcohol was used as a model compound, and dog plasma was employed as the biological matrix for these studies.  相似文献   

15.
A novel highly selective sample cleanup procedure based on the use of molecularly imprinted polymers (MIPs) as solid-phase extraction materials has been evaluated with respect to its applicability and routine use in environmental analysis. The method comprises the combination of a restricted access material (RAM) and a MIP allowing a selective sample preparation to be achieved in the online mode. This combination is called the size-selective sample separation and solvent switch (six-SPE). The RAM column combines size exclusion and adsorption chromatography, reducing the concentration of matrix molecules by a cutoff of 15 kDa. The MIP column selectively retains the triazine analytes whereas the residual matrix is not retained and separated completely. Thus, the automated RAM-MIP is capable of excluding all matrix and nontarget compounds. The cleaned and enriched extract is subsequently eluted to an HPLC column and analyzed by LC-MS. A complete on-line analysis cycle including multidimensional solid-phase extraction, separation, and detection takes less than 15 min. Terbuthylazine, atrazine, propazine, simazine, ametryn, prometryn, irgarol, and also the metabolites deethylatrazine and deisopropylatrazine can be determined without any matrix interferences, e.g., by humic acids. The whole setup is fully automated and may be continuously operated. Nonspecific interactions with the polymer are below 1% in all cases. The accuracy of the LC-MIP-LC-MS system was controlled using a certified reference material (Aquacheck). The applicability of the method to the cleanup of real samples was demonstrated by injection of contaminated river water samples. The stability of different polymers was tested by consecutive injections, and it was shown that the performance of the materials did not vary even after more than 300 enrichment and desorption cycles.  相似文献   

16.
This paper describes a new method for the determination of citalopram in biological fluids using molecularly imprinted solid-phase extraction as the sample cleanup technique combined with high performance liquid chromatography. The molecularly imprinted polymers were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, chloroform as porogen and citalopram hydrobromide as the template molecule. The novel imprinted polymer was used as a solid-phase extraction sorbent for the extraction of citalopram from human serum and urine. Effective parameters on citalopram retention were studied. The optimal conditions for molecularly imprinted solid-phase extraction consisted of conditioning with 1 mL methanol and 1 mL of deionized water at neutral pH, loading of citalopram sample (50 μg L(-1)) at pH 9.0, washing using 1 mL acetone and elution with 3 × 1 mL of 10 % (v/v) acetic acid in methanol. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of citalopram. Results from the HPLC analyses showed that the calibration curve of citalopram using MIP from human serum and urine is linear in the ranges of 1-100 and 2-120 μg L(-1) with good precisions (2.5 and 1.5 % for 10.0 μg L(-1)), and recoveries (between 82-86 and 83-85 %), respectively.  相似文献   

17.
A procedure for rapidly screening and quantitatively analyzing organic molecules is presented, in which a miniaturized solid-phase extraction (SPE) cartridge containing 0.6 mg of graphitized carbon black (the GCB-mu-trap) is used for sample pretreatment. Then surface-assisted laser desorption ionization time-of-flight mass spectrometry (SALDI-TOF-MS) screening is followed by liquid chromatography/mass spectrometry (LC/MS) for robust quantitative analysis of samples containing analytes of interest. Liquid samples with volumes up to 100 mL were extracted using the GCB-mu-trap, and SALDI screening was performed by transferring a few particles of the GCB 4 sorbent from the mu-trap onto a stainless steel plate. Analytes were then simply ionized and desorbed by irradiating the GCB 4 particles without any further pretreatment. GCB 4 was found to be an excellent surface for the SALDI analysis of small molecules, providing spectra with very clean backgrounds. The small size of the cartridge (micropipet filter tip) results in enrichment of the analytes on a small surface area, affording low SALDI-TOF-MS detection limits. Furthermore, the removal of just a few particles from the mu-trap does not significantly affect the subsequent quantitative determination. This approach offers considerable reductions in analytical costs by eliminating unnecessary SPE-LC/MS analyses.  相似文献   

18.
A molecularly imprinted polymer (MIP) material was synthesized for use as an in-tube solid-phase microextraction (SPME) adsorbent. The inherent selectivity and chemical and physical robustness of the MIP material was demonstrated as an effective stationary-phase material for in-tube SPME. An automated and on-line MIP SPME extraction method was developed for propranolol determination in biological fluids. This simplified the sample preparation process and the chromatographic separation of several beta-blocker compounds. The method developed for propranolol showed improved selectivity in comparison to alternative in-tube stationary-phase materials, overcoming the limitations of existing SPME coating materials. Preconcentration of the sample by the MIP adsorbent increased the sensitivity, yielding a limit of detection of 0.32 microg/mL by UV detection. Excellent method reproducibility (RSD < 5.0%) and column reusability (> 500 injections) were observed over a fairly wide linear dynamic range (0.5-100 microg/mL) in serum samples. To our knowledge, this is the first report on the automated application of a MIP material for in-tube SPME. The method was inexpensive, simple to set up, and simplified the choice of SPME adsorbent for in-tube extraction. The approach can potentially be extended to other MIPs for the determination of a wide range of chemically significant analytes.  相似文献   

19.
Cai Y  Jiang G  Liu J  Zhou Q 《Analytical chemistry》2003,75(10):2517-2521
The adsorptive potential of multiwalled carbon nanotubes (MWNTs) for solid-phase extraction of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol was investigated for the first time. The three analytes are quantitatively adsorbed on a MWNTs-packed cartridge, then the analytes retained on the cartridge are quantitatively desorbed with suitable amounts of methanol. Finally, the analytes in the methanol eluate are determined by high performance liquid chromatography-fluorometric detection. Parameters influencing the extraction efficiency, such as volume of the sample solutions, pH of the sample, and the eluent volume, were examined. Comparative studies showed that MWNTs were superior to C18 for the extraction of the more polar analyte bisphenol A and at least as effective as C18 for the extraction of 4-n-nonylphenol and 4-tert-octylphenol. Compared to XAD-2 copolymer, MWNTs exhibited a better property for the extraction of all three analytes. The developed method has been applied to determine bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol in several environmental water samples. The accuracy of the proposed method was tested by recovery measurements on spiked samples, and good recovery results (89.8-104.2%) were obtained. Detection limits of 0.083, 0.024, and 0.018 ng mL(-1) for bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol, respectively, were achieved under the optimized conditions.  相似文献   

20.
We evaluated the feasibility of extracting selectively and rapidly herbicide residues in soils by hot water and collecting analytes with a Carbograph 4 solid-phase extraction (SPE) cartridge set on-line with the extraction cell. Phenoxy acid herbicides and those nonacidic and acidic herbicides which are often used in combination with phenoxy acids were selected for this study. Five different soil samples were fortified with target compounds at levels of 100 and 10 ng/g (30 ng/g of clopyralid and picloram) by following a procedure able to mimic weathered soils. Herbicides were extracted with water at 90 °C and collected on-line by the SPE cartridge. After the cartridge was disconnected from the extraction apparatus, analytes were recovered by stepwise elution to separate nonacidic herbicides from acidic ones. The two final extracts were analyzed by liquid chromatography/mass spectrometry with an electrospray ion source. At the lowest spike level considered, analyte recoveries ranged between 81 and 93%, except those for 2,4-DB and MCPB, which were 63%. For 16 herbicides out of 18, the ANOVA test showed recoveries were not dependent on the type of soil. The method detection limit was in the 1.7-10 ng/g range. For the analytes considered, method comparison showed this extraction method was overall more efficient than Soxhlet and sonication extraction techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号