首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 917 毫秒
1.
电催化二电子氧还原反应(2e-ORR)制备过氧化氢(H2O2)凭借其高效、安全和绿色特点,逐步发展为一种可能替代工业蒽醌法的新途径.碳基纳米材料具有电子导电性高、结构稳定性好、纳米结构调控容易、成本低等优势,是一类具有良好前景的2e-ORR制备H2O2的催化剂.针对该类碳基电催化材料的发展现状及相应材料上的活性中心和反...  相似文献   

2.
石墨烯具有良好的电子传导性、巨大的表面积、稳定的化学和机械稳定性等,在分子氧催化还原(ORR)反应中可以有效地改进催化剂的催化活性,是过渡金属大环催化剂新的基底材料。对石墨烯支持的非贵金属氮杂环复合材料在ORR催化反应中的应用以及影响催化O_2活性的因素进行了讨论。重点讨论了卟啉和酞菁中心金属核,Co和Fe,以及卟啉和酞菁作为N的前驱体对ORR电催化活性的影响,并展望了非贵金属氧还原催化剂在燃料电池中的研究发展方向。  相似文献   

3.
Fe-N/C催化剂在氧还原反应中的作用机理对于开发高效、可持续使用的非贵金属催化剂在聚合物电解质膜燃料电池中的应用至关重要,但目前仍存在很多的难以攻克的问题。为了揭示纳米结构与电化学活性的关系,本研究开发了一种具有高电化学活性的Fe-N/C氧还原催化剂,该催化剂含有Fe-N_x位点和被氮掺杂的碳纳米管包裹的Fe/Fe_3C纳米晶体两种具有氧还原反应电化学活性的纳米结构。尽管不含贵金属铂,本研究合成的Fe-N/C催化剂在碱性条件下仍显示出较高的ORR活性,半波电势为0.86 V(vs RHE),质量活性为18.84 A/g(0.77 V(vs RHE),极限电流密度为–4.3 mA·cm~(–2)。同时,电子转移数为3.7(0.2 V(vs RHE),说明Fe-N/C催化剂中4电子ORR反应的比例较高。石墨烯包覆的金属Fe/Fe_3C纳米晶生长N-CNTs后,材料的导电性有所提高,并且Fe-N_x活性位点在Fe/Fe_3C纳米颗粒表面分布均匀,改善了材料的电化学活性。本研究为非贵金属氧还原电催化剂的继续深入研究以及广泛应用于商业化生产提供了一定的借鉴和依据。  相似文献   

4.
碳基材料作为非贵金属催化剂具有导电性能高、稳定性能好、价格低廉、环境友好等优点,在燃料电池阴极催化剂领域中引起了广泛的关注,尤其是过渡金属和异原子共掺杂能够显著提高碳材料的氧气还原催化活性。本文采用聚醚(F127)作为软模版,苯酚、甲醛作为碳源,四苯基溴化膦作为磷源,硝酸盐作为过渡金属来源,通过挥发溶剂自组装及高温煅烧过程制备了过渡金属(Co、Fe、Ni、Mn)和磷(P)共掺杂多孔碳材料(TM-P-C)。通过旋转环盘电极研究了TM-P-C在0.1 mol/L KOH电解液中的氧气还原电催化性能。研究结果表明:TM-P-C催化剂具有较高的氧化还原反应(ORR)电催化性能,其ORR活性为P-Co-C>P-NiC>P-Fe-C>P-Mn-C,其中P-Co-C的ORR电催化性能可与商业20wt%Pt/C催化剂相媲美,其电流密度与20wt%Pt/C催化剂的电流密度相当,与20wt%Pt/C仅存在66 mV的半波电位差,表现为ORR的4e–转移途径。制备的TM-P-C催化剂所具有的较高氧气还原电催化活性主要来自于过渡金属和P原子之间的协同作用。此外,TM-P-C催化剂表现出优异的...  相似文献   

5.
燃料电池阴极发生氧还原反应(ORR)的动力学过程缓慢,通常需要Pt/C作为催化剂降低反应过电位。然而Pt作为一种贵金属,其使用将极大增加燃料电池的生产成本,因此开发非贵金属催化剂来替代Pt/C催化剂具有重要意义。金属有机框架材料(MOFs)因其具有高比表面积、有序多孔结构、拓扑结构可调等特点作为前驱体被广泛应用于M-N/C类催化剂的合成。M-N/C类催化剂继承了MOFs的结构特征,且具有丰富的活性位点,提高催化活性和分级结构以促进传质过程,因此表现出良好的ORR催化性能。从单金属/氮/碳和多金属/氮/碳组成角度出发,对近几年来关于M-N/C类催化剂的结构设计思路和合成策略进行了总结,阐述了其在ORR中的催化性能,展望了其未来发展前景。  相似文献   

6.
夏艺萌  吴帅  谭丰  李卫  魏清茂  闵春刚  杨喜昆 《材料导报》2018,32(3):362-367, 372
采用化学氧化法在苯胺聚合过程中分别加入钴(Co)为Co2+而阴离子基团为(C2H3O2)22-、Cl22-、(NO3)22-、SO42-及C2O42-的乙酸钴、氯化钴、硝酸钴、硫酸钴、草酸钴等钴盐,合成出不同聚苯胺-钴(PANI-Co)配位聚合物。然后将PANI-Co聚合物作为前驱体在N2气氛中900℃热处理,制备出氮掺杂的Co-N-C碳基催化剂。采用SEM、XRD、XPS、Raman等手段分析Co-N-C催化剂的形貌、结构、化学组成及化学价态,并采用电化学方法测试了Co-N-C催化剂的电催化活性。结果表明,Co盐的阴离子基团对Co-N-C催化剂的形貌影响不大,但对Co-N-C催化剂中表面化学组成及含量、碳结构、石墨化程度以及Co的价态影响较大,并且Co盐的阴离子基团会影响Co-N-C催化剂的电催化活性,其氧还原(ORR)活性按照(C2H3O2)22-Cl22-(NO3)22-SO42-C2O42-顺序降低。含(C2H3O2)22-和Cl22-阴离子的钴盐制备的Co-N-C催化剂具有较高的ORR活性,这可能源于其较高含量的石墨氮和吡啶氮。  相似文献   

7.
燃料电池能够将化学能转化为电能, 是一种绿色高效的能量转换装置, 但是受到阴极氧还原反应(ORR)动力学迟缓的限制, 燃料电池需要使用Pt等贵金属作为催化剂, 这就导致其成本显著增加。碳基负载单原子催化剂(C-SACs)展现出高原子利用率和高选择性等优异性能。另外, C-SACs在不同pH环境下都显示出优异的ORR催化活性, 被视为贵金属催化剂的经济替代品。本文介绍了近年来提升C-SACs的 ORR催化性能的策略, 包括选择不同种类的金属中心原子, 调控金属中心的配位结构以及对载体进行杂原子掺杂。同时介绍了这些C-SACs在旋转盘电极和电池器件中的性能。最后对C-SACs在实际应用中的可行性以及潜在的挑战进行了展望和总结。  相似文献   

8.
Fe-N/C催化剂在氧还原反应中的作用机理对于开发高效、可持续使用的非贵金属催化剂在聚合物电解质膜燃料电池中的应用至关重要, 但目前仍存在很多的难以攻克的问题。为了揭示纳米结构与电化学活性的关系, 本研究开发了一种具有高电化学活性的Fe-N/C氧还原催化剂, 该催化剂含有Fe-Nx位点和被氮掺杂的碳纳米管包裹的Fe/Fe3C纳米晶体两种具有氧还原反应电化学活性的纳米结构。尽管不含贵金属铂, 本研究合成的Fe-N/C催化剂在碱性条件下仍显示出较高的ORR活性, 半波电势为0.86 V(vs RHE), 质量活性为18.84 A/g(0.77 V(vs RHE), 极限电流密度为-4.3 mA·cm -2。同时, 电子转移数为3.7(0.2 V(vs RHE), 说明Fe-N/C催化剂中4电子ORR反应的比例较高。石墨烯包覆的金属Fe/Fe3C纳米晶生长N-CNTs后, 材料的导电性有所提高, 并且Fe-Nx活性位点在Fe/Fe3C纳米颗粒表面分布均匀, 改善了材料的电化学活性。本研究为非贵金属氧还原电催化剂的继续深入研究以及广泛应用于商业化生产提供了一定的借鉴和依据。  相似文献   

9.
氧化铈的电子导电性较低、氧空位数量少, 难以单独用作为电催化剂。但是掺杂过渡金属或非金属元素可以提高氧化铈的CO催化能力, 同时在氧化物中掺杂钴可有效提高材料的电催化能力, 因此本工作开展了对钴掺杂的氧化铈电催化性能的研究。采用均相沉淀法制备了钴掺杂的氧化铈纳米粒子, 电化学测试发现当钴掺杂比例为20mol%时, 氧化铈纳米粒子对氧气还原反应(ORR)和氧气析出反应(OER)的综合催化能力最强。经过10 h的长时间催化作用, ORR、OER过程中的电流密度分别下降了20%、5%左右, 远优于贵金属和未掺杂氧化铈纳米粒子催化剂, 显示出良好的催化稳定性。拉曼光谱、阻抗图及XPS谱图等的测试分析表明钴掺杂后材料的电荷转移阻抗降低(电子导电性的提高)、氧活性物种和氧空位增加是氧化铈催化性能提高的主要原因。本工作通过钴掺杂大幅度提高了氧化铈的电催化性能, 同时为其它离子导体作为双功能电催化剂的使用提供了借鉴。  相似文献   

10.
电化学氧还原反应(ORR)在能源、催化等领域具有广阔的应用前景, 因此开发性能优异、选择性高的催化剂对于促进ORR发展具有重要意义。ORR反应按照反应过程可以分为二电子反应过程和四电子反应过程。本研究以化学修饰石墨烯为原料, 通过调控其表面缺陷并与银-对苯二琨二甲烷(Ag-TCNQ)纳米点复合, 合成了不同缺陷程度的复合催化剂, 在此基础上比较了Ag-TCNQ/高缺陷石墨烯和Ag-TCNQ/低缺陷石墨烯的ORR性能。研究结果显示Ag-TCNQ/高缺陷石墨烯催化ORR的电子转移数为2.4, 双氧水产率达0.62 mg/h, 法拉第效率为64.45%。相比之下, Ag-TCNQ/低缺陷石墨烯参与ORR的电子转移数为3.7, 氧还原半波电位约为0.7 V(vs. RHE)。因此, 高缺陷催化剂促进ORR的二电子过程, 而低缺陷的催化剂促进ORR的四电子过程。在复合材料中, Ag-TCNQ纳米颗粒和石墨烯发挥了各自的结构优势, 形成复合效应, 共同提高了催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号