首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hygrothermal stresses due to the change in environmental condition may induce buckling and dynamic instability in the composite shell structures. In the present investigation, the hygrothermoelastic buckling behavior of laminated composite shells are numerically simulated using geometrically nonlinear finite element method. The orthogonal curvilinear coordinate is used for modeling a general doubly curved deep or shallow shell surface. The geometrically nonlinear finite element formulation is based on general nonlinear strain–displacement relations in the orthogonal curvilinear coordinate system. The present theory can be applicable to thin and moderately thick shells. The mechanical linear and nonlinear stiffnesses, and the nonmechanical nonlinear geometric stiffness matrices and the hygrothermal load vector are presented. It is also observed that during the present numerical solution of nonlinear equilibrium equation, in order to construct the nonlinear stiffness matrices for the first load step, the initial deformation can be assumed as zero or any computer generated small random number or the properly scaled fundamental buckling mode shape. To verify the present formulations and finite element code, the present results are compared well with those available in the open literature. Parametric studies such as thickness ratio and shallowness ratio on buckling are performed for spherical, truncated conical and cylindrical composite shell panels. The buckling behavior and deflection shapes are characterized by multiple wrinkles along unreinforced direction at higher moisture concentrations or temperature rise.  相似文献   

2.
Almost no dynamic buckling analysis has been performed so far for the sandwich/multilayer viscoelastic shells. Even the vibration analyses of the mentioned shells have been restricted to the harmonic loads ignoring the transverse stresses and their continuity at the mutual interfaces of the layers, and the transverse flexibility of the shell. In the present paper, a high-order double-superposition global–local theory inherently suitable for nonlinear analyses is proposed and employed for nonlinear dynamic buckling and postbuckling analyses of imperfect viscoelastic composite/sandwich cylindrical shells subjected to thermomechanical loads. Depending on the nature of the applied loads, both complex modulus and hierarchical constitutive models are used for the viscoelastic materials. Results reveal that as the time duration of the suddenly applied loads decreases beyond the first natural period of the shell, the dynamic buckling load becomes much higher than the static buckling load, especially for the rectangular load–time histories. Furthermore, the relaxation behavior of the viscoelastic material may decrease the dynamic buckling load.  相似文献   

3.
基于经典壳理论和von Karman几何非线性理论,导出了功能梯度圆底扁球壳的位移型几何非线性控制方程及简支边界条件,推导过程考虑了均匀变温场及均布外侧压力。用打靶法计算了由控制方程和边界条件提出的两点边值问题,得到了壳体轴对称变形的数值结果。考察了壳体几何参数、材料横向梯度特性、组份材料体积分数指数和弹性模量以及均匀变温场对壳体屈曲平衡路径、上/下临界荷载和平衡构形的影响。数值结果表明:随组分材料体积分数指数的增加和弹性模量的减小,壳体上临界荷载均会显著减小;体积分数指数对壳体下临界荷载影响规律较复杂;均匀升温使壳体上/下临界荷载显著增加/减小。材料横向梯度特性对简支边功能梯度圆底扁球壳屈曲平衡路径和后屈曲稳态构形有显著影响。该文末给出了便于工程设计的两个数表和一些数值曲线。  相似文献   

4.
In this study, the mechanical buckling of functionally graded material cylindrical shell that is embedded in an outer elastic medium and subjected to combined axial and radial compressive loads is investigated. The material properties are assumed to vary smoothly through the shell thickness according to a power law distribution of the volume fraction of constituent materials. Theoretical formulations are presented based on a higher-order shear deformation shell theory (HSDT) considering the transverse shear strains. Using the nonlinear strain–displacement relations of FGMs cylindrical shells, the governing equations are derived. The elastic foundation is modelled by two parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The boundary condition is considered to be simply-supported. The novelty of the present work is to achieve the closed-form solutions for the critical mechanical buckling loads of the FGM cylindrical shells surrounded by elastic medium. The effects of shell geometry, the volume fraction exponent, and the foundation parameters on the critical buckling load are investigated. The numerical results reveal that the elastic foundation has significant effect on the critical buckling load.  相似文献   

5.
Dynamic buckling of functionally graded materials truncated conical shells subjected to normal impact loads is discussed in this paper. In the analysis, the material properties of functionally graded materials shells are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Geometrically nonlinear large deformation and the initial imperfections are taken into account. Galerkin procedure and Runge–Kutta integration scheme are used to solve nonlinear governing equations numerically. From the characteristics of dynamic response obtain critical loads of the shell according to B-R criterion. From the research results it can be found that gradient properties of the materials have significant effects on the critical buckling loads of FGM shells.  相似文献   

6.
In this paper, buckling behaviors of composite cylindrical shells made from functionally graded materials (FGMs) subjected to pure bending load were investigated. The material properties were assumed to be graded along the thickness. The non-uniform bending force on the shell section was considered in the buckling government equation of FGM cylindrical shells based on the Donnell shallow shell theory. The prebuckling deformation of the FGM cylindrical shells was neglected and the buckling mode was assumed to occur non-uniformly in local district along the shell circumferential direction. The eigenvalue method was used to obtain the buckling critical condition. The theoretical results were in excellent agreement with those of ABAQUS code. Results show that the inhomogenity of the materials is significant for buckling of FGM cylindrical shells.  相似文献   

7.
The axisymmetric buckling of elastic–plastic cylindrical shells subjected to axial impact are studied using a finite element analysis. This study reveals that shells, subjected to axial impact, are both velocity and mass sensitive, so that larger energies can be absorbed by a shell for high-velocity impacts when decreasing the striking mass. It is shown that the inertia characteristics of the shell, together with the material properties, determine particular patterns of the axial stress wave propagation, thus, causing either dynamic plastic or dynamic progressive buckling to develop during the initial phase of the shell response. Domains of the load parameters, where the different buckling phenomena develop, are obtained for two particular shells. Strain rate effects are also considered when discussing the energy absorbing properties of the shells.  相似文献   

8.
径向载荷作用下复合材料圆柱壳的非线性动力屈曲   总被引:1,自引:0,他引:1  
采用半解析法求解径向阶跃载荷作用下复合材料圆柱壳的非线性动力屈曲。基于一阶剪切变形理论,由Hamilton原理推导出包含横向剪切变形以及几何初缺陷的圆柱壳的非线性动力方程,位移及载荷沿周向采用级数展开,由Galerkin方法得到微分方程组,通过有限差分法求解;根据响应情况,由B—R准则判定屈曲,确定屈曲临界载荷。  相似文献   

9.
A postbuckling analysis is presented for a functionally graded cylindrical thin shell of finite length subjected to compressive axial loads and in thermal environments. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations are based on the classical shell theory with von Kármán–Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of axially-loaded, perfect and imperfect, cylindrical thin shells with two constituent materials and under different sets of thermal environments. The effects played by temperature rise, volume fraction distribution, shell geometric parameter, and initial geometric imperfections are studied.  相似文献   

10.
In this research work, a nonlinear structure analysis by the finite element analysis (FEA) was carried out to investigate the failure reason of an all-terrain crane telescopic boom. An overall simplified model consisting of telescopic boom and luffing jib was established by beam element, and analyzed using geometric nonlinear static method. A local detailed model consisting of the 4th and 5th telescopic boom section (TBS) was established by shell and solid element, and analyzed using geometric nonlinear and contact nonlinear static method. The result of the overall simplified model FEA indicated that the boom strength met the design criteria, and the 5th TBS of local detailed model occurred stress wrinkle.Structure experiment was designed based on the boom load characteristics in accident and analyzed using nonlinear static method and explicit dynamic method; the connection of load, boom buckling failure and stress wrinkle was studied. The result indicated that the accident was caused by elastic buckling. When the telescopic boom stress state changed from continuous state to wrinkle state, the buckling occurred. So the critical buckling state characteristic was stress wrinkle.  相似文献   

11.
In this paper, the effect of random system properties on the post buckling load of geometrically nonlinear laminated composite cylindrical shell panel subjected to hygrothermomechanical loading is investigated. System parameters are assumed as independent random variables. The higher order shear deformation theory and von-Karman nonlinear kinematics are used for basic formulation. The elastic and hygrothermal properties of the composite material are considered to be dependent on temperature and moisture concentration using micromechanical approach. A direct iterative based C0 nonlinear finite element method in conjunction with first-order perturbation technique proposed by present author for the plate is extended for shell panel subjected to hygrothermomechanical loading to compute the second-order statistics (mean and variances) of laminated composite cylindrical shell panel. The effect of random system properties, plate geometry, stacking sequences, support conditions, fiber volume fractions and temperature and moisture distributions on hygrothermomechanical post-buckling load of the laminated cylindrical shell panel are presented. The performance of outlined stochastic approach has been validated by comparing the present results with those available in the literature and independent Monte Carlo simulation.  相似文献   

12.
The dynamic axisymmetrical behaviour of a perfect complete spherical shell made from a bilinear or work hardening material and subjected to a uniform external step pressure loading is investigated. A perturbation method of analysis leads to a Mathieu equation which gives the dynamic buckling pressure and associated mode for a complete spherical shell. The influence of the plastic parameter and damping on the dynamic buckling pressure and mode number are also discussed.  相似文献   

13.
波纹扁球壳的非线性动态屈曲   总被引:2,自引:0,他引:2  
研究了用于传感器弹性元件波纹扁球壳的非线性动态屈曲问题。建立了波纹扁球壳的非线性振动微分方程,根据突变理论建立了该壳体动态屈曲的突变模型,得到了动态屈曲的临界方程。  相似文献   

14.
The bending, buckling and free vibration of annular microplates made of functionally graded materials (FGMs) are investigated in this paper based on the modified couple stress theory and Mindlin plate theory. This microplate model incorporates the material length scale parameter that can capture the size effect in FGMs. The material properties of the FGM microplates are assumed to vary in the thickness direction and are estimated through the Mori–Tanaka homogenization technique. The higher-order governing equations and boundary conditions are derived by using Hamilton’s principle. The differential quadrature (DQ) method is employed to discretize the governing equations and to determine the deflection, critical buckling load and natural frequencies of FGM microplates. A parametric study is then conducted to investigate the influences of the length scale parameter, gradient index and inner-to-outer radius ratio on the bending, buckling and vibration characteristics of FGM microplates with hinged–hinged and clamped–clamped supports. The results show that the size effect on the bending, buckling and vibration characteristics is significant when the ratio of the microplate thickness to the material length scale parameter is smaller than 10.  相似文献   

15.
This paper deals with the stochastic post buckling response the functionally graded material (FGMs) beam with surface bonded piezoelectric layers subjected to thermoelectromechanical loadings. A C0 nonlinear finite element method using higher order shear deformation theory with von-Karman nonlinearity is used for basic formulation. The random system parameter such as material properties of FGM and piezoelectric layers and thermoelectromechanical loadings are modeled as uncorrelated random input variables. The first and second order perturbation method and Monte Carlo sampling (MCS) are proposed to examine the mean, coefficient of variation, probability distribution function and probability of failure of critical post buckling load. Typical numerical results are presented for volume fraction indexes, slenderness ratios, boundary conditions, piezoelectric layers and thermoelectromechanical loadings with random system properties. The present outlined approach is validated with the results available in the literature and by employing MCS.  相似文献   

16.
Summary In this paper, the vibration and stability of a three-layered conical shell containing a functionally graded material (FGM) layer subjected to axial compressive load are studied. The material properties of the functionally graded layer are assumed to vary continuously through the thickness of the shell. The variation of properties follows an arbitrary distribution in terms of the volume fractions of the constituents. The fundamental relations, the dynamic stability and compatibility equations of three-layered truncated conical shells containing an FGM layer are obtained first. Applying Galerkin's method, these equations are transformed to a pair of time dependent differential equations, and critical axial load and frequency parameter are obtained. The results show that the critical parameters are affected by the configurations of the constituent materials and the variation of the shell geometry. Comparing results with those in the literature validates the present analysis.  相似文献   

17.
The buckling response of functionally graded ceramic-metal cylindrical shell panels under axial compression and thermal load is presented here. The formulation is based on the first-order shear deformation shell theory and element-free kp-Ritz method. The material properties of shell panels are assumed to vary through their thickness direction according to a power-law distribution of the volume fraction of constituents. Approximations of the displacement field are expressed in terms of a set of mesh-free kernel particle functions. A stabilized conforming nodal integration approach is employed to estimate the bending stiffness, and the shear and membrane terms are evaluated using a direct nodal integration technique to eliminate membrane and shear locking for very thin shells. The mechanical and thermal buckling responses of functionally graded shell panels are investigated, and the influences of the volume fraction exponent, boundary conditions, and temperature distribution on their buckling strengths are also examined.  相似文献   

18.
This paper presents the results of a study on the axisymmetric snap-through buckling of orthotropic shallow spherical shells subjected to a total-area uniform pressure. Both static and dynamic buckling of the orthotropic caps are investigated according to the classical thin shell theory and Reissener's shallow shell assumptions.

To take moderate rotation and initial imperfection into account, a set of nonlinear differential governing equations is derived in terms of the mid-surface displacement and a stress function.

Two types of imperfection, and damping (in the dynamic case) are included to simulate real structures. It is seen that imperfections play an important role in the reduction of buckling loads for both static and dynamic analyses. Damping, on the other hand, increases the dynamic buckling load. The finite difference scheme is applied to represent spatial and time derivatives, and the block elimination method is used to solve the resulting difference equations.  相似文献   


19.
This paper presents buckling analysis of a two-dimensional functionally graded cylindrical shell reinforced by axial stiffeners (stringer) under combined compressive axial and transverse uniform distributive load. The shell material properties are graded in the direction of thickness and length according to a simple power law distribution in terms of the volume fractions of the constituents. Primarily, the third order shear deformation theory (TSDT) is used to derive the equilibrium and stability equations. Since there is no closed form solution, the numerical differential quadrature method, (DQM), is applied for solving the stability equations. Initially, the obtained results for an isotropic shell using DQM were verified against those given in the literature for simply supported boundary conditions. The effects of load, geometrical and stringer parameters along with FG power index in the various boundary conditions on the critical buckling load have been studied. The study of results confirms that, stringers have significant effects on critical buckling load.  相似文献   

20.
The main aim of this paper is to investigate the nonlinear buckling and post-buckling of functionally graded stiffened thin circular cylindrical shells surrounded by elastic foundations in thermal environments and under torsional load by analytical approach. Shells are reinforced by closely spaced rings and stringers in which material properties of shell and the stiffeners are assumed to be continuously graded in the thickness direction. The elastic medium is assumed as two-parameter elastic foundation model proposed by Pasternak. Based on the classical shell theory with von Karman geometrical nonlinearity and smeared stiffeners technique, the governing equations are derived. Using Galerkin method with three-term solution of deflection, the closed form to find critical torsional load and post-buckling load–deflection curves are obtained. The effects of temperature, stiffener, foundation, material and dimensional parameters are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号