首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
微米和纳米SiO2改性聚四氟乙烯的摩擦磨损性能   总被引:16,自引:4,他引:16       下载免费PDF全文
使用超细及纳米SiO2颗粒填充改性聚四氟乙烯塑料。测量其摩擦系数、磨损系数、结晶度,得到了填加量与复合材料摩擦系数、磨损系数和结晶度的关系曲线,并使用扫描电镜(SEM)对其表面形貌进行了分析。结果表明,无论微米或纳米SiO2、表面处理后的纳米SiO2,均使PTFE的摩擦系数有所提高,而耐磨损性能也有大幅度的提高。填充量小于6%时,填加未经偶联剂处理的纳米SiO2的SiO2/PTFE复合材料的磨损率降低98.5%;填充量大于6%以后,磨损率趋于稳定;填充量为6%时,摩擦系数仅从未加填料时的0.1提高为0.12。而偶联剂表面处理的纳米SiO2复合材料的摩擦系数提高幅度最小。  相似文献   

2.
以Cu-Ni-Y2O3-MoS2-Graphite混合粉为基体,加入质量分数分别为0%、1%、2%、3%、4%的纳米Al2O3增强相,采用粉末冶金方法制备纳米Al2O3增强新型铜基自润滑复合材料。结果表明:随着铜合金粉末中纳米Al2O3颗粒含量的增加 , 所制备自润滑复合材料样品的密度下降,但硬度和压溃强度先上升后下降,在Al2O3含量为2%时硬度从HV 23.7增加到HV 35.1,压溃强度从189 MPa提高到276 MPa。由石墨和MoS2组成的混合固体自润滑材料的摩擦系数小且稳定,约0.12。Al2O3质量分数为2%的样品磨损量最小,是未加Al2O3试样磨损量的1/7~1/8。铜基体经过镍、纳米Al2O3等弥散颗粒强化和固体润滑相石墨和MoS2的加入,所制备的材料已具有一定的自润滑性能。  相似文献   

3.
冯东  姜岩  茹红强  罗旭东  张国栋  曹一伟 《材料导报》2018,32(24):4248-4252
为了探究纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结行为的作用机理。以微米级MgO、纳米级Al2O3和SiO2为主要原料制备陶瓷基复合材料。通过XRD和 SEM等检测手段对烧后试样的物相组成和微观结构进行测试与表征,重点研究Al2O3/SiO2的加入对复相陶瓷物相组成、微观结构及烧结性能的影响。结果表明:随着Al2O3/SiO2加入量的增大,试样烧后相对密度和烧后线变化率呈先增大后减小再增大的趋势,加入15%Al2O3/SiO2(质量分数)的试样经1 500 ℃烧结后,其相对密度可以达到94%。引入的Al2O3/SiO2与基体中的MgO生成镁铝尖晶石与镁橄榄石相,原位反应伴随的体积膨胀,抵消部分烧结过程中的体积收缩。Al2O3/SiO2加入量为75%(质量分数)的试样经1 400 ℃烧结后,基体中有大量堇青石相生成,随着煅烧温度提高到1 500 ℃,堇青石分解所产生的高温液相促进了试样的烧结收缩。  相似文献   

4.
SiO2对铝合金熔体直接氧化的影响   总被引:5,自引:2,他引:5       下载免费PDF全文
本文研究了在高温空气氛中涂覆在Al-Mg-Si合金表面的SiO2对铝合金直接氧化的影响规律。实验揭示了SiO2对Al-Mg-Si合金熔体直接氧化生长表面的形态的影响规律,发现SiO2有助于Al2O3/Al复合材料以光滑的方式进行氧化生长,提高了材料的致密度。实验还发现,SiO2可消减Al-Mg-Si合金熔体直接氧化所需的孕育期,缩短Al2O3/Al复合材料的生长时间。  相似文献   

5.
微纳米SiO2/PP复合材料增强增韧的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究无机刚性颗粒对通用塑料聚丙烯 (PP) 的力学性能的影响, 采用熔融共混方法制备了经硅烷偶联剂A-151处理的SiO2/PP 复合材料, 并通过其缺口冲击、 拉伸、 弯曲试验和冲击断面的形貌观察, 分析研究了微纳米SiO2颗粒大小、 填充量、 表面改性以及不同颗粒大小SiO2混合物对PP复合材料增韧、 增强效果的影响。实验结果表明: 纳米SiO2的加入可以同时改善其韧性、 刚性和强度; 填充量相同, 颗粒越细, SiO2/PP复合材料的力学性能越好。SiO2经改性后填充到PP基体中, 明显改善了颗粒在基体中的分散性及基体与颗粒之间界面结合性能, 使复合材料的综合力学性能得到提高。不同颗粒大小的SiO2混合后填充到PP基体中, 混合SiO2的协同效应使复合材料拉伸、 弯曲性能进一步提高, 对PP基体具有更好的增强效果, 但其冲击性能下降。  相似文献   

6.
通过混炼工艺制备了片状Al2O3填充聚全氟乙丙烯(FEP)复合材料,以颗粒状Al2O3为对比样品,研究了片状Al2O3形状和尺寸对 FEP基复合材料热导率的影响,利用SEM观察了FEP基复合材料的微观形貌。结果表明:在低填充量下,Al2O3颗粒在FEP基体中呈“海岛”状分布,没有形成连续的导热网链,但其热导率明显提高;复合材料拉伸强度与断裂伸长率随Al2O3含量的增加而减小;低填充量时复合材料热导率的提高主要来自Al2O3的微细片状结构,这种微细片状结构一方面提高了有效导热路径,另一方面增加了颗粒与基体之间接触面积,因此有利于热导率的提高。  相似文献   

7.
Al2O3颗粒增强纯铝基复合材料的研究   总被引:7,自引:0,他引:7  
本文探讨了用粉末冶金法,采用常规的冶金加工设备和工艺,制造Al2O3颗粒增强纯铝基复合材料的可行性。研究了不同Al2O3体积含量复合材料的显微组织及力学性能。初步试验了二次热挤压变形对颗粒分布和对基体强化的影响。结果表明,Al2O3颗粒与纯铝粉混合,加压烧结制备的复合材料,组织致密,颗粒分布均匀,随Al2O3含量增加,复合材料强度、硬度及弹性模量大大提高,Al2O3含量小于10%时,塑性不降低。二次热挤压有助于提高颗粒分布的均匀性;并使基体显著强化。  相似文献   

8.
纤维取向对复合材料磨损性能影响的统计学研究   总被引:5,自引:0,他引:5       下载免费PDF全文
采用挤压铸造法制备了3Al2O3·2SiO2f/ZL109复合材料.利用统计学方法研究了载荷为600N、滑动速度为1.05m/s的润滑滑动磨损条件下纤维取向对复合材料磨损性能的影响.研究结果表明:纤维平行取向与垂直取向复合材料的磨损体积均符合概率密度f(x)的同一总体的正态分布[式(1)],纤维取向对复合材料的耐磨性影响不大.通过磨面的SEM分析,发现两种纤维取向的复合材料的磨损均为纤维断裂与磨粒磨损.  相似文献   

9.
硅酸铝短纤维增强铝硅合金复合材料的界面结构   总被引:5,自引:0,他引:5       下载免费PDF全文
用挤压铸造法制备硅酸铝短纤维(Al2O3·SiO2) 增强铝硅(Al-Si) 合金复合材料, 并利用透射电镜观察了Al2O3·SiO2 纤维与Al-Si 合金基体界面。结果表明: 硅酸铝纤维局部区域与合金中的镁及预制件中的粘结剂起反应, 反应生成物分别为M gAl2O4 和Si3 (PO4)4。  相似文献   

10.
以TiCl4 、Fe (NO3 )3·9H2O 和Na2SiO319H2O 为原料, 采用溶胶凝胶法结合超临界流体干燥法(SCFD)制备了纳米级TiO2/ Fe2O3 和TiO2/ Fe2O3/ SiO2 复合光催化剂。以光催化降解苯酚对所得催化剂的催化活性进行了评价。结果表明, 纳米TiO2/ Fe2O3 复合粒子与单组分TiO2 比较, 复合粒子光催化活性高于单组分的TiO2, 6h 苯酚降解率高达95.9 %。SiO2 的加入可以抑制纳米粒子粒径的长大和晶相的转变, 增强TiO2 纳米粒子的热稳定性。复合光催化剂中Fe2O3 最佳掺入量为0.06 %, SiO2 最佳掺入量为10 %(摩尔分数) 。并用XRD、TEM 和FTIR 等手段进行了表征。TiO2 以锐钛矿型形式存在, SiO2 以无定性形式存在。比较了不同制备方法制得的TiO2/ Fe2O3 复合光催化剂, 得出超临界干燥法制备的光催化剂具有粒径小、比表面积大、分散性好、光催化活性高等特点。采用超临界流体干燥可直接得锐钛型纳米复合光催化剂。  相似文献   

11.
PTFE复合材料的摩擦学性能及力学性能   总被引:8,自引:0,他引:8  
利用MM-200型磨损试验机,对不同填料填充PTFE复合材料的摩擦磨损性能进行了研究,并探讨了淬火处理对PTFE复合材料摩擦学性能及力学性能的影响.研究发现,几乎所有填料均可大大降低PTFE复合材料的磨损,但其对PTFE复合材料性能的影响差别较大.聚苯脂填充PTFE复合材料虽然具有良好的摩擦磨损性能,但是其拉伸强度较小.PI增大了PTFE复合材料的摩擦系数,随着PI含量的增加,PTFE复合材料的拉伸强度增大,而其伸长率则减小.CdO填充PTFE复合材料虽具有良好的摩擦性能,但其伸长率较大.淬火处理使PTFE复合材料的结晶度下降,从而导致PTFE复合材料的硬度减小、耐磨性变差.  相似文献   

12.
采用石墨/ 二硫化钼填充改性聚苯酯/ 聚四氟乙烯复合材料, 研究了复合材料的力学性能和摩擦磨损性能。研究表明, 石墨和MoS2 的加入不仅能够很好地改善Ekonol/ PTFE 复合材料的力学性能, 使复合材料的拉伸强度、弯曲强度和硬度均有所提高, 而且还使Ekonol/ PTFE 复合材料的摩擦系数增加, 磨损体积减小, 耐磨性能显著提高。当Ekonol 含量为5 % , 石墨/ 二硫化钼总含量为8 %时, 拉伸强度、弯曲强度分别提高了31 %和41 % ,硬度值约提高了713 %。SEM 分析表明, Ekonol/ 石墨/ MoS2 / PTFE 复合材料的磨损主要以粘着磨损为主。  相似文献   

13.
利用MHK-500 型环-块磨损试验机, 对MoS2、CuS、PbS 及石墨(添加量均为30 vo l% )填充的聚四氟乙烯(PTFE) 复合材料在干摩擦条件下与GCr15 轴承钢对摩时的摩擦磨损性能进行了较为系统的研究, 并利用扫描电子显微镜(SEM ) 和光学显微镜对PTFE 复合材料的磨屑和摩擦磨损表面进行了观察。结果表明, 添加石墨降低了PTFE 的摩擦系数, 而添加MoS2、CuS 及PbS则增大了PTFE 的摩擦系数; 同时, 添加MoS2、CuS、PbS 及石墨均可将PTFE 的磨损量降低2 个数量级, 其中以PbS 的减磨效果为最好, 而MoS2 的减磨效果则最差。  相似文献   

14.
金属填充PTFE复合材料的摩擦磨损性能研究   总被引:21,自引:0,他引:21  
利用MHK-500型环块磨损实验机,对金属Cu、pb及Ni填充改性的PTEFE复合材料在干摩擦条件下与GCr15轴承钢对摩时的摩擦磨损性能进行了系统研究,并利用JEM-1200EX/S分析电子显微镜和光学显微镜对PTEE复合材料的磨屑及摩擦磨损表面进行了考察。摩擦磨损实验的结果表明,金属填料Cu、Pb及Ni大大改善了PTFE复合材料的耐磨性,PTFE复合材料的磨损量比纯PTFE降低了1-2个数量级  相似文献   

15.
用M-2000型摩擦磨损试验机对纳米Si3N4及其与石墨、MoS2混合填充聚四氟乙烯(PTFE)复合材料在干摩擦条件下与45#钢对磨时摩擦磨损性能进行了研究,用洛氏硬度仪对其进行了测量,用扫描电子显微镜对磨损表面进行了观察.结果表明:纳米Si3N4的加入能提高PTFE复合材料的硬度和耐磨性,纳米Si3N4与MoS2混合填充会使PTFE复合材料的耐磨性能提高更多,特别是在载荷增大时其耐磨效果更好.纳米Si3N4能阻止PTFE复合材料中磨损微裂纹的产生,在纳米Si3N4的富聚区,磨损微裂纹较少,在纳米Si3N4的贫聚区,磨损的微裂纹较多.纳米Si3N4填充PTFE复合材料的摩擦系数比纯PTFE大,且随着载荷增加有所减小,石墨的加入可降低PTFE的摩擦系数.  相似文献   

16.
纤维及晶须增强PTFE复合材料的摩擦磨损性能研究   总被引:7,自引:0,他引:7  
利用MHK-500型环-块磨损试验机,对炭纤维,玻璃纤维及钛酸钾(K2Ti6O13)晶须增强聚四氟乙烯(PTFE)复合材料在干摩擦条件下与GCr15轴承钢对磨时的摩擦学性能进行了较为系统的研究,并利用扫描电子显微镜(SEM)和光学显微镜对其磨屑和摩擦表面进行了观察。结果表明,炭纤维,玻璃纤维及K2Ti6O13晶须虽增大了PTFE的摩擦系数,但均可将PTFE的磨损量降低2个数量级,其中玻璃纤维的减磨效果最好,K2TiO13晶须的减磨效果最差,由于K2TiO13晶须的承载能力较差,致使K2Ti6O13晶须增强PTFE复合材料的磨损表面发生了明显的挤压变形,因而该复合材料具有较高的摩擦和磨损。  相似文献   

17.
利用往复式摩擦磨损试验机,对聚四氟乙烯(PTFE)及石墨和MoS2填充的PTFE复合材料的摩擦磨损性能进行了测定,并利用光学显微镜对PTFE复合材料的摩擦磨损表面进行了观察。结果表明,一方面,石墨和MoS2起到了润滑作用,另一方面,石墨和MoS2阻止了PTFE带状大面积破坏,因而使得PTFE的摩擦系数降低,耐磨性提高。  相似文献   

18.
纳米SiC与石墨填充PTFE复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
考察了不同含量的纳米SiC对石墨/聚四氟乙烯复合材料摩擦磨损性能的影响,采用扫描电子显微镜分析了磨损表面,并探讨了其磨损机理。结果表明:纳米SiC与石墨能够很好地协同增强聚四氟乙烯,纳米SiC的加入大大提高了复合材料的承载能力,石墨的加入减少了纳米SiC与对偶面的摩擦系数,从而降低了纳米SiC的脱落趋势,提高了复合材料的耐磨性。当纳米SiC含量为5%时,5%石墨/PTFE复合材料表现出最佳的耐磨性,具有一定的应用价值。  相似文献   

19.
纳米蒙脱石填充PTFE和UHMWPE的摩擦磨损性能   总被引:3,自引:0,他引:3  
用纳米蒙脱石(nano-MMT)对聚四氟乙烯(PTFE)和超高分子量聚乙烯(UHWMPE)进行填充改性,在往复式滑动摩擦试验机上进行摩擦磨损实验,用扫描电镜观察了材料摩擦表面形貌.结果表明:nano-MMT可以提高PTFE和UHWMPE材料的耐磨性,而PTFE基和UHWMPE基复合材料的摩擦系数无明显增大.与UHMWPE相比,nano-MMT更能提高PTFE基材料的耐磨性;nano-MMT/PTFE复合材料比nano-MMT/UHMWPE复合材料具有更低的摩擦系数和更好的导热性;纯PTFE、纯UHWMPE和10%nano-MMT/PTFE复合材料磨损机理主要为粘着和犁沟效应,而10%nano-MMT/UHWMPE复合材料表现为犁沟和疲劳机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号