首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This paper reports new, absolute measurements of the thermal conductivity of liquid refrigerants R11 and R12 in the temperature range 250–340 K at pressures from saturation up to 30 MPa. The measurements, performed in a new transient hot-wire instrument employing two anodized tantalum wires, have an estimated uncertainty of ±0.5%. Measurements of the thermal conductivity of toluene in the temperature range 250–340 K at pressures up to 30 MPa are also reported.  相似文献   

2.
The thermal conductivity of liquid 1, 2-dimethoxyethane was measured from 243K to 353K at pressures from 0 to 30 MPa by the transient hot-wire technique employing two anodized tantalum hot wires. The experimental data were correlated as a function of pressure and temperature. The average absolute deviation of experimental data from those calculated by the equation was 0.24 %, and the maximum absolute deviation was 0.80 %. The uncertainty of the thermal conductivity was 2.0 % with a coverage factor of k = 2.  相似文献   

3.
A new apparatus for measuring both the thermal conductivity and thermal diffusivity of fluids at temperatures from 220 to 775 K at pressures to 70 MPa is described. The instrument is based on the step-power-forced transient hot-wire technique. Two hot wires are arranged in different arms of a Wheatstone bridge such that the response of the shorter compensating wire is subtracted from the response of the primary wire. Both hot wires are 12.7 µm diameter platinum wire and are simultaneously used as electrical heat sources and as resistance thermometers. A microcomputer controls bridge nulling, applies the power pulse, monitors the bridge response, and stores the results. Performance of the instrument was verified with measurements on liquid toluene as well as argon and nitrogen gas. In particular, new data for the thermal conductivity of liquid toluene near the saturation line, between 298 and 550 K, are presented. These new data can be used to illustrate the importance of radiative heat transfer in transient hot-wire measurements. Thermal conductivity data for liquid toluene, which are corrected for radiation, are reported. The precision of the thermal conductivity data is ± 0.3% and the accuracy is about ±1%. The accuracy of the thermal diffusivity data is about ± 5%. From the measured thermal conductivity and thermal diffusivity, we can calculate the specific heat, Cp, of the fluid, provided that the density is measured, or available through an equation of state.  相似文献   

4.
This paper reports new, absolute measurements of the thermal conductivity of the liquid refrigerants R22, R123, and R134a in the temperature range 250–340 K at pressures from saturation up to 30 MPa. The measurements, performed in a transient hot-wire instrument employing two anodized tantalum wires as the heat source, have an estimated uncertainty of ±0.5%. A recently developed semiempirical scheme is employed to correlate successfully the thermal conductivity and the viscosity of these refrigerants, as a function of their density.  相似文献   

5.
This paper presents new absolute measurements for the thermal conductivity and thermal diffusivity of gaseous argon obtained with a transient hot-wire instrument. Six isotherms were measured in the supercritical dense gas at temperatures between 296 and 423 K and pressures up to 61 MPa. A new analysis for the influence of temperature-dependent properties and residual bridge unbalance is used to obtain the thermal conductivity with an uncertainty of less than 1% and the thermal diffusivity with an uncertainty of less than 4%. Isobaric heat capacity results were derived from measured values of thermal conductivity and thermal diffusivity using a density calculated from an equation of state. The heat capacities presented here have a nominal uncertainty of 4% and demonstrate that this property can be obtained successfully with the transient hot wire technique over a wide range of fluid states. The technique will be useful when applied to fluids which lack specific heat data.  相似文献   

6.
根据瞬态热线法测量导热系数的原理,研制了测量装置和数据采集系统.利用阳极氧化的方式,在热线表面进行绝缘处理,使其能够适用于导电性或者极性物质的导热系数的研究.为了检验该系统的性能,在常温常压下对蒸馏水的导热系数进行了测量.测试结果表明,该系统能够满足导热系数测试的需要.  相似文献   

7.
New measurements of the thermal conductivity of stainless steel AISI 304L over the temperature range 300 to 550 K are reported. To perform the measurements, the transient hot-wire technique was employed, with a new wire sensor. The sensor makes use of a soft silicone paste material and of two thin polyimide films, between the hot wires of the apparatus and the stainless steel specimen. The transient temperature rise of the wire sensor is measured in response to an electrical heating step over a period of 40 s to 2 s, allowing an absolute determination of the thermal conductivity of the solid, as well as of the polyimide film and the silicone paste. The method is based on a full theoretical model with equations solved by a two-dimensional finite-element method applied to the exact geometry. At the 95% confidence level, the standard deviation of the thermal conductivity measurements is 0.6%, while the standard uncertainty of the technique is less than 1.5%.  相似文献   

8.
This paper presents absolute measurements for the thermal conductivity and thermal diffusivity of toluene obtained with a transient hot-wire instrument employing coated wires over the density interval of 735 to 870 kgm–3. A new expression for the influence of the wire coating is presented, and an examination of the importance of a nonuniform wire radius is verified with measurements on argon from 296 to 323 K at pressures to 61 MPa. Four isotherms were measured in toluene between 296 and 423 K at pressures to 35 MPa. The measurements have an uncertainty of less than ±0.5% for thermal conductivity and ±2% for thermal diffusivity. Isobaric heat capacity results, derived from the measured values of thermal conductivity and thermal diffusivity, using a density determined from an equation of state, have an uncertainty of ±3% after taking into account the uncertainty of the applied equation of state. The measurements demonstrate that isobaric specific heat determinations can be obtained successfully with the transient hot wire technique over a wide range of fluid states provided density values are available.  相似文献   

9.
This paper presents new absolute measurements of the thermal conductivity and of the thermal diffusivity of gaseous argon obtained with a transient hot-wire instrument. We measured seven isotherms in the supercritical dense gas at temperatures between 157 and 324 K with pressures up to 70 MPa and densities up to 32 mol · L–1 and five isotherms in the vapor at temperatures between 103 and 142 K with pressures up to the saturation vapor pressure. The instrument is capable of measuring the thermal conductivity with an accuracy better than 1% and thermal diffusivity with an accuracy better than 5%. Heat capacity results were determined from the simultaneously measured values of thermal conductivity and thermal diffusivity and from the density calculated from measured values of pressure and temperature from an equation of state. The heat capacities presented in this paper, with a nominal accuracy of 5%, prove that heat capacity data can be obtained successfully with the transient hot wire technique over a wide range of fluid states. The technique will be invaluable when applied to fluids which lack specific heat data or an adequate equation of state.  相似文献   

10.
The thermal conductivities of refrigerant mixtures of difluoromethane (R32) and pentafluoroethane (R125) in the liquid phase are presented. The thermal conductivities were measured with the transient hot-wire method with one bare platinum wire. The experiments were conducted in the temperature range of 233–323 K and in the pressure range of 2–20 MPa. An empirical equation to describe the thermal conductivity of a near-azeotropic mixture, R32+R125, is provided based on the measured 168 thermal conductivity data as a function of temperature and pressure. The dependence of thermal conductivity on the composition at different temperatures and pressures is also presented. The uncertainty of our measurements is estimated to be ±2%. Paper dedicated to Professor Edward A. Mason.  相似文献   

11.
New measurements of the thermal conductivity of liquid toluene between 300 and 550 K have been used to study the importance of radiative heat transfer when using the transient hot-wire technique. The experimental data were used to obtain the radiation correction to the hot-wire temperature rises. Radiationcorrected values of thermal conductivity are reported. This study shows that the transient hot-wire method is much less affected by radiation than steady-state techniques.  相似文献   

12.
The viscosity and thermal conductivity of acetic acid water mixtures were measured over the entire composition range and at temperatures ranging from 293 to 453 K. Viscosity measurements were performed with a high-pressure viscometer and thermal conductivity was measured using a modified transient hot-wire technique. A mercury filled. glass capillary was used as the insulated hot wire in the measurements. The l iscosity data showed unusual trends with respect to composition. At it given temperature. the viscosity was seen to increase with increasing acid concentration, attain a maximum. and then decrease. The thermal conductivity, on the other hand, decreased monotonically with acid concentration. A generalized corresponding-states principle using water and acetic acid as the reference fluids was used to predict both viscosity and thermal conductivity with considerable sucres.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–34, 1994, Boulder. Colorado, U.S.A.  相似文献   

13.
This paper reports measurements of the thermal conductivity of refrigerants R32, R124, R125, and R141b in the liquid phase. The measurements, covering a temperature range from 253 to 334 K and pressure up to 20 MPa, have been performed in a transient hotwire instrument employing two anodized tantalum wires. The uncertainty of the present thermal-conductivity data is estimated to be ±0.5%. The experimental data have been represented by polynomial functions of temperature and pressure for the purposes of interpolation. A comparison with other recent measurements is also included.  相似文献   

14.
This paper describes absolute measurements of the thermal conductivity of aqueous LiBr solutions in the concentration range 5 to 15m (molality), the temperature range 30 to 100°C, and the pressure range 0.1 to 40 MPa. The measurements have been performed with the aid of a transient hot-wire apparatus employing a thin tantalum wire coated with an anodic tantalum pentoxide insulation layer. In using the tantalum wire, a modification of the bridge circuit has been made to keep the electric potential of the wire always higher than the ground level in order to protect the insulation layer from breakdown. The experimental data, which have an estimated accuracy of ±0.5%, have been correlated in terms of the polynomials of concentration, temperature, and pressure for practical use. Also, it has been found that the pressure coefficient of the thermal conductivity decreases with increasing concentrations.  相似文献   

15.
A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.  相似文献   

16.
Experimental measurements of the thermal conductivity of mono-, di-, tri-, and tetra-ethylene glycol are presented. The experiments were carried out at atmospheric pressure and at temperatures ranging from 25 to 65°C. The multi-current transient hot-wire technique has been used with a platinum wire of 25 μm diameter; the electrical current varied from 25 to 75 mA. For all studied glycols, it was found that the thermal conductivity increases with temperature and decreases with the glycol molar mass. The random uncertainty of the reported experimental thermal conductivity data is less than 0.9%. The estimated systematic errors affecting the obtained data are at most 2%. The values obtained in this study were compared with previously published results for the four glycols, finding deviations of the order of 2%.  相似文献   

17.
The experimental data reported in the literature after 2000 have been investigated for the viscosity and thermal conductivity of helium-4, neon, and argon at low density. The well-established values of thermal conductivity by transient hot-wire measurements are not reliable enough for noble gases in the low-pressure gas region. These facts motivate us to determine the thermal conductivity from accurate viscosity data and the ab initio Prandtl number, with an uncertainty of 0.25 % for temperatures ranging between 200 K and 700 K. The theoretical accuracy is superior to the accuracy of the best measurements. The calculated results are accurate enough to be applied as standard values for the thermal conductivity of helium-4, neon, and argon over the considered temperature range.  相似文献   

18.
Using the transient hot-wire method, measurements were made for solid NaBr of both the thermal conductivity and the heat capacity per unit volume. The measurements were performed in the temperature range 100 to 400 K and at pressures up to 2 GPa. An adiabatic compression technique allowed the determination of the thermal expansivity as a function of pressure at room temperature. The heat capacity did not vary with pressure. Analysis of the thermal conductivity data showed that it can be described adequately by the Leibfried-Schlömann formula. For temperatures up to 400 K only acoustic modes needed to be taken into account. A small contribution of optic modes to the heat transport might be apparent at the highest temperatures.  相似文献   

19.
Low-pressure thermal conductivity and thermal diffusivity measurements are reported for argon and nitrogen in the temperature range from 295 to 350 K at pressures from 0.34 to 6.9 MPa using an absolute transient hot-wire instrument. Thermal conductivity measurements were also made with the same instrument in its steady-state mode of operation. The measurements are estimated to have an uncertainty of 1% for the transient thermal conductivity, 3% for the steady-state thermal conductivity, and 4% for thermal diffusivity. The values of isobaric specific heat, derived from the measured thermal conductivity and thermal diffusivity, are considered accurate to 5% although this is dependent upon the uncertainty of the equation of state utilized.Paper presented at the Sixteenth European Conference on Thermophysical Properties, September 1–4, 2002, London, United Kingdom  相似文献   

20.
This paper describes a novel type of transient hot-wire cell for thermal conductivity measurements on electrically conducting liquids. A tantalum wire of 25 m. diameter is used as the sensing element in the cell, and it is insulated from the conducting liquids by an anodic film of tantalum pentoxide, 70 nm thick. The cell is suitable for measurements on conducting liquids at elevated temperatures. The results of test measurements on liquid water at its saturation vapor pressure are reported in order to confirm the correct operation of the thermal conductivity cell. The data, which have an estimated accuracy of ±3%, depart by less than ±1.8% from the correlation proposed by the International Association for the Properties of Steam. Results are also presented for concentrated aqueous solutions of lithium bromide, which are frequently used in absorption refrigerator cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号