首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
为研究不同应力路径下岩石的能耗变化规律,采用MTS815岩石力学试验系统开展了砂岩的单轴压缩、常规三轴和卸荷三轴试验。结果表明:耗散能曲线变化是岩石内部损伤和破裂产生的表现,在弹塑性变形阶段,常规三轴耗散的能量占岩石吸收总能量的比例最大,卸荷三轴次之,单轴压缩最小;岩石的储能极限与围压具有明显的线性关系,单轴压缩试验中岩石的储能极限最低,卸荷三轴次之,常规三轴试验岩石的储能极限最高;岩石峰前和峰后的能量耗散速率与围压也具有良好的线性关系,峰后应力跌落阶段能量耗散速率明显较峰前能量耗散速率大数倍至数十倍,说明岩石峰前损伤速率较小,而峰后却快速损伤破裂,耗散能曲线的突然变陡表明岩石破坏发生。  相似文献   

2.
为研究岩石在中低速冲击下的动力特性,利用MTS和落锤冲击试验系统进行了红砂岩准静态和动态单轴压缩试验,获得了10-2-101.7 s-1应变率范围砂岩全应力-应变曲线。结果表明,中低应变率加载条件下,砂岩经历典型压密、弹性变形、非稳定裂纹发展至脆性破裂后阶段。随着加载应变率的提高,砂岩峰值应力及其对应应变、残余应变均逐步增加,破坏模式则由X状共轭剪切破坏转变为劈裂破坏;动态强度增长遵循热活化和宏观黏性机制联合作用规律;中低应变率下岩石的吸收总能量和弹性应变能随变形演化规律基本一致,且弹性应变能和较耗散应变能的应变率效应更为显著。  相似文献   

3.
为了明确干燥和饱水红砂岩剪切强度、剪切储能与剪应变特征,在岩石剪切试验系统进行了不同法向应力作用下干燥和饱水红砂岩剪切试验,详细分析了法向应力和饱水作用对红砂岩剪切强度、剪切应变能密度和剪应变的影响规律。结果表明:剪力-剪切位移曲线,干燥状态线性段明显,饱水状态屈服段明显,法向应力在10 MPa~20 MPa,剪切强度和剪切位移增加显著,法向应力在20 MPa~40 MPa切向位移变化很小;压剪应力状态下的粘聚力和内摩擦角明显低于三轴压缩应力状态下的粘聚力和内摩擦角,饱水使三轴应力路径下的粘聚力和内摩擦角都弱化,而压剪应力路径下只对内摩擦角弱化。法向应力小于20 MPa时,剪切强度劣化率随法向应力的增加线性增大,法向应力在20 MPa~40 MPa时,剪切强度劣化率在一定值上下波动。峰值剪切应变能密度与法向应力之间存在良好线性变化规律,随法向应力增大,饱水对峰值剪切应变能密度的影响增加。干燥和饱水红砂岩峰值剪切应变能密度分别趋于定值1.4579 MJ/m3和1.0033 MJ/m3,饱水使峰值剪切应变能密度的劣化率趋于31.18%。根据峰值剪应变随法向应力的变化规律,构建了干燥和饱水红...  相似文献   

4.
The mechanical properties of concrete under cyclic tensile loading using square waveform, sine waveform and ramp waveform are studied. The experiments are performed on a closed-loop electro-hydraulic servo-controlled material testing system (MTS). The axial strain, dissipated energy per loading cycle, the damage evolution law and deformation modulus are mainly studied. The results show that the three-stage evolution law of axial strain and damage variable of concrete under ramp waveform and sine waveform are more obvious than those under the square waveform. The dissipated energy changes at different stages of fatigue life. At the beginning and end of the fatigue life, the rate of dissipated energy is higher than that at the medium stage of the fatigue time, which is attributed to the formation of cracks. The evolution of deformation modulus of concrete subjected to cyclic tensile loading using three loading waveforms also shows three stages: fast increase in the damage—increase at a slow constant rate—and accelerated increase in damage until failure.  相似文献   

5.
Cyclical compression was applied to steamed Spruce wood in uniaxial strain under stress control. Molecular fatigue response was investigated in terms of thermoporosimetry. In accordance with classical Coffin–Manson theory, it was found that the creation of fatigue damage depends on plastic strain amplitude, not depending on the applied stress, applied strain, or the amount of dissipated energy as such. At a specified strain amplitude, molecular fatigue does not appear to be sensitive to loading frequency. However, it does appear to be related to decrement of dynamic stiffness in the course of dynamic loading. Molecular reorganization becomes more pronounced along with further energy application. Results for specimens loaded in the tangential material direction are rather consistent, whereas the molecular reaction varies widely along with the local strain amplitude in the case of specimens loaded in the radial material direction. This implies that the molecular fatigue process is essentially strain-controlled, rather than stress-controlled.  相似文献   

6.
三轴SHPB加载下砂岩力学特性和破坏模式的试验研究   总被引:4,自引:3,他引:1       下载免费PDF全文
利用改造的三轴SHPB动静组合加载实验装置,对均质砂岩进行了不同围压和不同应变率下的三轴冲击压缩试验,作为对比利用RMT-150C试验机也进行了部分准静态下的三轴压缩实验。根据实验结果,分析了围压对砂岩动态冲击性能的影响,并重点讨论了冲击过程中岩石的破坏模式。研究结果表明,在围压一定的情况下,岩石的动态压缩强度随应变率的提高而提高;在应变率相同的情况下,岩石的动态压缩强度和弹性模量会随着围压的增大而增大。岩石发生破坏的临界入射能,随着围压的增大而增大。岩石单位体积吸收能与应变率之间呈线性递增关系,而且递增的程度随着围压的增加而增加。三轴冲击加载下,应变率较低时岩石内部形成压剪破裂面但整体不失稳,应变率很大时岩石破碎形成锥形块体形式。  相似文献   

7.
中应变率加载下云杉各向异性力学行为研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高速加载INSTRON设备对云杉开展100 s-1~102 s-1中应变率压缩实验,研究了材料沿顺纹、横纹径向、弦向、以及径(弦)切面内与顺纹呈15°、30°、45°、60°和75°夹角方向的力学性能。实验表明随着加载方向由顺纹向横纹径(弦)向变化,材料屈服强度逐渐减小,应力-应变曲线塑性流动段由"塑性软化"向"塑性硬化"转变;试件沿不同方向压缩屈服强度表现出较强应变率敏感性。冲击压缩下云杉宏观破坏模式与加载方向相关,沿顺纹方向加载时,试件中部向外膨胀,产生褶皱、纤维屈曲折断;当载荷方向与顺纹夹角逐渐增大时,材料失效模式体现为木材纤维分层滑移、撕裂。采用简化Hill强度理论对中低应变率下云杉空间屈服行为进行了理论描述,不同应变率下云杉空间屈服面为椭圆柱曲面,屈服曲面半径长度随应变率提高而增加。实验与理论分析表明,云杉沿空间不同方向具有各向异性力学特性,屈服强度受应变率和加载方向影响较大,而破坏模式则主要依赖于载荷方向。  相似文献   

8.
Nitka  M.  Tejchman  J. 《Granular Matter》2015,17(1):145-164

The paper focuses on the DEM modelling of the behaviour of plain concrete during uniaxial compression and uniaxial tension using the discrete element method. The model takes into account the concrete heterogeneity at the meso-scale level. The effects of concrete density, size of aggregate grains and specimen size on the stress–strain curve, volume changes and fracture process are studied. In addition, the evolution of contact forces, grain rotations, displacement fluctuations and strain localization during deformation is investigated. The elastic, kinetic, plastic and numerical dissipated energy is calculated and analysed at a different stress–strain stage. Concrete is described as a 1-phase or 3-phase material. The macroscopic 2D and 3D results are compared with the corresponding experiments. A satisfactory agreement between experiments and calculations is achieved.

  相似文献   

9.
许威 《包装工程》2019,40(11):86-93
目的 以杨木为研究对象,研究其静动态压缩载荷作用下应力-应变曲线的变化特征,建立适合的本构模型,并对其进行描述。方法 对杨木试件进行静动态压缩加载试验,分析静动态压缩载荷作用下杨木应力-应变曲线的变化特征,构建适用于静动态压缩载荷作用下杨木的本构模型。结果 静态压缩加载杨木的应力-应变曲线分为线弹性阶段、屈服阶段和密实化阶段等3个部分,动态压缩加载杨木的应力-应变曲线分为线弹性阶段和屈服阶段等2个部分;静态压缩加载时,杨木轴向屈服应力最大,分别是径向和弦向的5.70倍和7.75倍;动态压缩加载时,当应变率从400 s-1增加到1000 s-1时,径向、弦向和轴向的屈服应力分别增加了1.51,1.59,3.12倍,杨木的屈服应力具有应变率敏感性;采用包含应变率影响的本构方程来描述杨木在静动态压缩载荷作用下的本构关系是比较合适的。结论 杨木是一种应变率敏感材料,静动态压缩载荷作用下杨木的应力-应变曲线均表现出多孔材料的特征,将多孔材料本构模型应用于木材是可行的。  相似文献   

10.
In this paper, the synergistic effects of loading frequency and testing temperature on the fatigue damage evolution and life prediction of cross-ply SiC/MAS ceramic-matrix composite have been investigated. The damage parameters of the fatigue hysteresis modulus, fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of SiC/MAS composite. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S–N curves of SiC/MAS composite under the loading frequency of 1 and 10 Hz at 566 °C and 1093 °C in air condition have been predicted. The synergistic effects of the loading frequency and testing temperature on the degradation rate of fatigue hysteresis dissipated energy and the interface shear stress have been analyzed.  相似文献   

11.
Examining the mechanisms of sand creep using DEM simulations   总被引:2,自引:0,他引:2  
In this study, DEM simulations of triaxial creep tests on dense and loose sand samples were carried out to examine the micromechanics involved during creep. The simulated creep responses reproduce qualitatively the published experimental results. During the primary creep, the creep stress is gradually borne by the contact normal forces instead of contact tangential forces so that the columnar particle structures can be formed. This process also leads to a continuous decrease in the creep rate. The columnar structures eventually are completely formed and the creep rate reaches a minimum. However, the structures become meta-stable and susceptible to buckling. This explains why a sand packing does not show an extended period of secondary creep in the experiment. Buckling of the columnar structures also gives rise to maximum dilatancy and a sharp transition of the major fabric orientation of weak forces from horizontal to vertical. The continuous buckling process of columnar structures increases the creep rate and sliding ratios of contacts during the tertiary creep. In addition, the trend of contact tangential forces decreasing and contact normal forces increasing is reversed. Finally creep rupture occurs as the creep stress–strain line intersects the complete stress–strain curve. All the creep samples follow their original volume-change tendency to continue their dilation or contraction response during creep.  相似文献   

12.
The mechanical behaviors of granular soils at different initial densities and confining pressures in the drained and undrained triaxial tests are investigated micromechanically by three-dimensional discrete element method (DEM). The evolutions of the microstructure in the numerical specimen, including coordination number, contact force and anisotropies of contact normal and contact force, are monitored during the shearing. The typical shear behaviors of granular soils (e.g. strain softening, phase transformation, static liquefaction and critical state behavior) are successfully captured in the DEM simulation. It is found that the anisotropies of contact normal, normal and tangential contact forces comprise the shear resistance and show different evolution features during shearing. After large strain shearing, the microstructure of the soil will finally reach a critical state, although the evolution path depends on the soil density and loading mode. Similar to the macroscopic void ratio $e$ and deviatoric stress $q$ , the coordination number and anisotropies of contact normal and contact force at the critical state also depend on the mean normal effective stress $P^{\prime }$ at the critical state.  相似文献   

13.
The characteristics of energy storage and dissipation in TiNi shape memory alloys were investigated experimentally based on the superelastic properties under various thermomechanical loading conditions. The influence of strain rate, cyclic loading and temperature-controlled condition on the characteristics of energy storage and dissipation of the material was investigated. Temperature on the surface of the material was observed and the influence of variation in temperature on the characteristics was clarified. The results obtained can be summarized as follows. (1) In the case of low strain rate, the stress plateaus appear on the stress-strain curves due to the martensitic transformation and the reverse transformation during loading and unloading. In the case of high strain rate, the slopes of the stress–strain curves are steep in the phase-transformation regions during loading and unloading. The recoverable strain energy per unit volume increases in proportion to temperature, but the dissipated work per unit volume depends slightly on temperature. In the case of low strain rate, the recoverable strain energy and dissipated work do not depend on both strain rate and the temperature-controlled condition. (2) In the case of high strain rate, while the recoverable strain energy density decreases and dissipated work density increases in proportion to strain rate under the temperature-controlled condition, the recoverable strain energy density increases and dissipated work density decreases under the temperature-uncontrolled condition. In the case of the temperature-uncontrolled condition, temperature varies significantly due to the martensitic transformation and therefore the characteristics of energy storage and dissipation differ from these under the temperature-controlled condition. (3) In the case of cyclic loading, both the recoverable strain energy and dissipated work decrease in the early 20 cycles, but change slightly thereafter. (4) The influence of strain rate, cyclic loading and the environment on the characteristics of energy storage and dissipation is important to be considered in the design of shape memory alloy elements.  相似文献   

14.
The temporal evolution of surface strain, resulting from a combination of normal and tangential loading forces on the fingerpad, was calculated from high-resolution images. A customized robotic device loaded the fingertip with varying normal force, tangential direction and tangential speed. We observed strain waves that propagated from the periphery to the centre of the contact area. Consequently, different regions of the contact area were subject to varying degrees of compression, stretch and shear. The spatial distribution of both the strains and the strain energy densities depended on the stimulus direction. Additionally, the strains varied with the normal force level and were substantial, e.g. peak strains of 50% with a normal force of 5 N, i.e. at force levels well within the range of common dexterous manipulation tasks. While these observations were consistent with some theoretical predictions from contact mechanics, we also observed substantial deviations as expected given the complex geometry and mechanics of fingertips. Specifically, from in-depth analyses, we conclude that some of these deviations depend on local fingerprint patterns. Our data provide useful information for models of tactile afferent responses and background for the design of novel haptic interfaces.  相似文献   

15.
为了深入研究沥青混合料的疲劳性能,解决现有疲劳性能研究中没有考虑实际路面所受荷载是变幅、重复的加卸载过程这一关键问题,本文通过加载顺序和加载幅值对沥青混合料粘弹性指标的影响进行试验研究,分析了变幅荷载作用下沥青混合料劲度模量、相位角的变化,并选取耗散能作为损伤变量分析了变幅荷载下沥青混合料的疲劳损伤。试验结果表明:劲度模量与应变加载顺序有关;在低高加载顺序中,相位角在两阶段都表现为随着荷载作用次数的增加而增大,在高低加载顺序中,相位角的变化与高低应变的幅值相关;应变在高低顺序加载下累积耗散能要高于低高顺序下的累积耗散能;当采用的前后加载幅值较大时,这种现象更加明显。  相似文献   

16.
The effect of stress state on the dynamic compressive strength and the dynamic damage evolution process of concretes are investigated by use of a Spilt Hopkinson Pressure Bar (SHPB) and the ultrasonic technique. The columned concrete specimen is encircled by a steel sleeve. The multi-axial loading includes the axial and the radial loadings. The axial loading is supplied by the incidence bar, and the radial ones are produced by the steel sleeve. Analysis of the dynamic damage evolution of the samples is based on the measurement of the changes of ultrasonic wave velocities before and after the impact tests. The waveforms in the test bars, the stress strain curves, the confining pressure of the specimen, the dynamic compressive strength and other information about the samples are obtained during the SHPB experiments. The results of the tests show that the loading rate and stress states of the specimen apparently influence the damage evolution process in concretes. The dynamic damage evolutions are accelerated with the increase of the strain rate and are delayed significantly under the confined pressure.  相似文献   

17.
The mechanical behaviors of TB991 weld sealant under cyclic loading conditions were experimentally investigated. The evolution of relaxation stress, cyclic softening, and dissipated energy was evaluated with the effect of strain amplitude and mean strain. The experimental results showed that the stress–strain response curves of the first loading-unloading and cyclic loading-unloading were significantly different. The phenomenon of stress relaxation and cyclic softening occurred under cyclic strain loading conditions. Furthermore, the relaxation stress and dissipated energy decreased rapidly during the initial cyclic loading and then steadily decreased with the increase of cycle number, while the cyclic softening increased rapidly at first and then steadily. Besides, a viscoelastic constitutive model was proposed which can describe the different shapes of stress–strain curve between the initial loading-unloading and the cyclic loading-unloading and also considers the cyclic stress relaxation and cyclic softening of the materials under cyclic loading condition. Comparisons between the numerical results and the experimental data demonstrated that the proposed model can better describe the mechanical behavior of TB991 weld sealant under cyclic loading conditions.  相似文献   

18.
以损伤比强度理论为基础,建立了钢纤维混凝土真三轴损伤比强度准则,并根据钢纤维混凝土试验资料,推荐了钢纤维混凝土损伤比变量表达式中的6个经验参数。利用钢纤维混凝土在单轴、双轴和三轴受力状态下的应力-应变曲线试验结果验证了损伤比取值合理性,对比了单轴受拉、单轴受压和双轴等压等典型受力状态下钢纤维混凝土和普通混凝土损伤比变量取值的差异。通过与国内外共104组钢纤维体积率为0.5%~2.5%的钢纤维混凝土三轴强度试验资料的比较,表明六经验参数钢纤维混凝土损伤比强度准则的三维破坏包络面接近已有认识;通过与国内外强度准则比较,表明损伤比强度准则与钢纤维混凝土三轴试验数据有较高的吻合度。对于围压三轴受力状态,提出简化的钢纤维混凝土常规三轴强度准则,并与已有常规三轴强度准则进行比较分析。此外,对于材料处于二轴受力,推荐了简化的损伤比二轴强度准则中的经验参数取值。  相似文献   

19.
为探讨混凝土三轴蠕变特性,采用SAM-2000微机控制电液伺服材料三轴试验机并配备压力自平衡式三轴压力室对混凝土进行了三轴压缩试验和三轴蠕变试验,结果表明:围压的存在可以显著提高混凝土的承载能力,围压越大,混凝土的轴向承载能力越高,蠕变变形量和变形速率越小。假设混凝土破坏为其内部微元破坏累积所致,微元破坏概率与混凝土应变存在一定关系P[#x003b5;],且服从Weibull分布,结合三轴压缩试验结果,计算得到了描述混凝土损伤特性的统计损伤变量;基于Burgers流变模型,通过引入损伤变量建立了混凝土三轴蠕变统计损伤模型,利用MATLAB软件进行了模型参数拟合,经对比分析,模型曲线与试验曲线拟合结果较理想,主偏应力越大,拟合结果越精确。此模型可供今后研究参考。  相似文献   

20.
纤维增强陶瓷基复合材料(CMCs)在疲劳载荷作用下,纤维相对基体在界面脱粘区往复滑移导致其出现疲劳迟滞现象,迟滞回线包围的面积,即迟滞耗散能,可用于监测纤维增强CMCs疲劳损伤演化过程。提出了一种基于迟滞耗散能的纤维增强CMCs疲劳寿命预测方法及考虑纤维失效的迟滞回线模型,建立了迟滞耗散能、基于迟滞耗散能的损伤参数、应力-应变迟滞回线与疲劳损伤机制(多基体开裂、纤维/基体界面脱粘、界面磨损与纤维失效)之间的关系。分析了疲劳峰值应力、疲劳应力比与纤维体积分数对纤维增强CMCs疲劳寿命S-N曲线、迟滞耗散能和基于迟滞耗散能的损伤参数随循环次数变化的影响。疲劳寿命随疲劳峰值应力增加而减小,随纤维体积含量增加而增加;迟滞耗散能随疲劳峰值应力增加而增加,随应力比和纤维体积分数增加而减小;基于迟滞耗散能的损伤参数随纤维体积分数增加而减小。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号