首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Plasticizers play a crucial role in various process of microencapsulation. In this study, the effect of incorporation of plasticizer in process of emulsion solvent evaporation was investigated on properties of ethyl cellulose (EC) microcapsules containing propranolol hydrochloride. The effect of plasticizer type and concentration were investigated on characteristics of microcapsules prepared from different viscosity grades of EC. Product yield, encapsulation efficiency, mean particle size, shape, surface characteristics, solid state of drug, and drug release profiles were evaluated. Product yield and encapsulation efficiency were not dependent on plasticizer type and concentration. However, encapsulation efficiency decreased with increase in EC viscosity grade in the most of the cases. The mean particle size was in the range of 724–797?μm and was not dependent on plasticizer type. Microcapsules formed in the presence of PEG had a very smooth surface with few pores. XRD and DSC studies revealed a reduction of drug crystallinity after microencapsulation especially in presence of PEG. The results showed that the presence of TEC and DEP with different concentrations had no marked effect on drug release from microcapsules containing different viscosity grades of EC. This was not the case when PEG was used, and despite its water solubility it reduced the drug release rate noticeably. The reduction in the drug release in the presence of PEG was concentration-dependent. The use of PEG as a plasticizer in process of emulsion solvent evaporation highly improved the EC microcapsule structure and retarded the drug release rate and therefore is recommended.  相似文献   

2.
This study was performed to obtain prolonged drug release with biodegradable in situ forming implants for the local delivery of metronidazole to periodontal pockets. The effect of polymer type (capped and uncapped PLGA), solvent type (water-miscible and water-immiscible) and the polymer/drug ratio on in vitro drug release studies were investigated. In situ implants with sustained metronidazole release and low initial burst consisted of capped PLGA and N-methyl-2-pyrolidone as solvent. Mucoadhesive polymers were incorporated into the in situ implants in order to modify the properties of the delivery systems towards longer residence times in vivo. Addition of the polymers changed the adhesiveness and increased the viscosity and drug release of the formulations. However, sustained drug release over 10 days was achievable. Biodegradable in situ forming implants are therefore an attractive delivery system to achieve prolonged release of metronidazole at periodontal therapy.  相似文献   

3.
The objectives of present work was to design and characterize the rabeprazole sodium loaded microcapsules prepared by solvent evaporation technique using ethyl cellulose (EC) based various mucoadhesive polymer, followed by a triple coating with Eudragit L100. The Box-behnken design (BBD) was applied for optimization of formulations containing EC, HPMCK100M and Eudragit L100 as factors for selected responses like entrapment efficiency, mucoadhesive property and drug release in 24 h. The prepared microcapsules were characterized for particle size, drug content, swelling index, mucoadhesive strength, and in vivo antiulcer activity. FT-IR studies revealed that there was no drug-polymer interaction. SEM studies revealed that microcapsules were non-aggregated, spherical shape and smooth appearance. In vitro drug release data from microcapsules was fitted to different kinetic models to explain release profiles. The correlation coefficient value (r2) indicated that the drug release followed Higuchi model. Analysis of variance (ANOVA) showed significant difference in the release of drug from all formulations at p < 0.05 level. Accelerated stability study of optimized formulation (F4) upto 6 months showed there was no change in drug content and release characteristics during storage. In vivo antiulcer activity showed that the optimized microcapsules were able to protect rat stomach against ulcer formation vis-à-vis aqueous solution of the drug showed only negligible and minimum effect.  相似文献   

4.
5-Fluorouracil (5FU) was successfully entrapped within poly(lactide-co-glycolide) (PLGA) and hydroyapatite (HA) composite microspheres using the emulsification/solvent extraction technique. The effects of HA to PLGA ratio, solvent ratio as well as polymer inherent viscosity (IV) on encapsulation efficiency were investigated. The degradation and drug release rates of the microspheres were studied for 5?weeks in vitro in phosphate buffered solution of pH 7.4 at 37?°C. The drug release profile followed a biphasic pattern with a small initial burst followed by a zero-order release for up to 35?days. The initial burst release decreased with increasing HA content. The potential of HA in limiting the initial burst release makes the incorporation of HA into PLGA microspheres advantageous since it reduces the risk of drug overdose from high initial bursts. The linear sustained drug release profile over the course of 5?weeks makes these 5-FU-loaded HA/PLGA composite microparticles a promising delivery system for the controlled release of chemotherapy drugs in the treatment of cancer.  相似文献   

5.
A new drug delivery system containing hydroxypropyl-β-cyclodextrin (HP-β-CD) and a mucoadhesive polymer was developed with the aim to overcome the limitations connected with the nasal application of drugs with low water solubility. Lorazepam, free or as cyclodextrin inclusion complex, was loaded into mucoadhesive microparticles by spray drying, using hydroxypropylmethyl cellulose (HPMC), carbomer, and HPMC/carbomer interpolymer complex (IPC) as mucoadhesive components. Differential scanning calorimetry (DSC) indicated the presence of drug crystalline areas in microparticles loaded with free lorazepam, whereas in those loaded with HP-β-CD inclusion complex, the drug was amorphous. Zeta potential measurement revealed that the polymer was the main component on the surface of the microparticles. The swelling rate and mucoadhesive properties of the microparticles were determined by the polymer type used in formulation. IPC- and carbomer-based microparticles showed superior swelling rate and mucoadhesion compared with the HPMC-based microparticles (p < .05). Drug loading into the polymer matrix decreased the swelling rate as well as the mucoadhesive properties of microparticles (p < .05), whereas the presence of HP-β-CD in the matrix did not induce any additional reduction of those parameters (p > .05). The in vitro dissolution studies demonstrated that the microparticles containing the lorazepam inclusion complex displayed 1.8–2.5 times faster drug release compared with those containing free lorazepam. The change in the drug release rate could be connected with improved drug solubility inside the polymer matrix due to inclusion complex formation, as well as to the reduction in crystallinity following complexation, as confirmed by DSC studies.  相似文献   

6.
Itopride hydrochloride (ITO HCl) is a prokinetic agent, used in the treatment of gastrointestinal motility disorders. The aim of the study was to develop stable mucoadhesive thermoreversible nasal gel to avoid first pass effect. ITO HCl was incorporated into the blends of thermoreversible polymers like poloxamer 407 and various mucoadhesive polymers in different concentrations to increase the contact of the formulations with nasal mucosa. The compatibility between the drug and the suggested polymers was studied by Fourier transform infrared and differential scanning calorimetry (DSC). The formulations were evaluated for clarity, pH, gelation temperature, mucoadhesive strength, gel strength, viscosity, and drug content. In addition, the in vitro drug release and the dissolution efficiency (DE)% were measured. The optimized formulations that showed the highest dissolution efficiency% (DE%) in saline phosphate buffer of pH 6.4 at 35?±?0.5?°C were chosen for stability testing at temperatures of 4?±?2 and 25?±?2?°C/60?±?5% RH. It was found that F1 and F17 that contain 18% w/v poloxamer 407 and 0.5% w/v of hydroxypropylmethyl cellulose K4M or methyl cellulose (MC), respectively, showed higher stability results as indicated by their higher t90 values (days).  相似文献   

7.
The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may be a potential vehicle for the sustained delivery of Doxy.  相似文献   

8.
Purpose: The conventional dosage form of Ketoconazole (KZ) shows poor absorption due to rapid gastric emptying. Chitosan based mucoadhesive nanoparticles (NPs) of KZ were developed to efficiently release drug at its absorption window i.e. stomach and the site of action i.e. esophagus.

Method: The NPs were prepared by ionic gelation method. Concentration of polymer, cross-linking agent and ratio of drug/polymer as well as polymer/cross linking agent were optimized.

Results: NPs had 69.16?±?5.91% mucin binding efficiency, particle size of 382.6?±?2.384?nm, ζ potential of +48.1?mv and entrapment efficiency of 59.84 ± 1.088%. DSC thermogram indicated absence of any drug polymer interaction. The drug release was by controlled, non-fickian diffusion mechanism. Ex vivo diffusion studies were performed by emptying the stomach contents after 2?h to simulate in vivo gastric emptying. The results showed that drug diffusion from the solution across stomach mucosa stopped after emptying whereas that from the NPs continued upto 5?h. Hence we could conclude that the NPs must have adhered to the stomach mucosa and thereby would have been retained at this absorption site even after gastric emptying.

Conclusion: The orally delivered KZ loaded mucoadhesive NPs can be used as an efficient carrier for delivering drug at its absorption window i.e. the stomach and the site of action i.e. esophagus even after gastric emptying.  相似文献   

9.
Abstract

The main purpose of this investigation was to evaluate ethylcellulose as a carrier for the preparation of prolonged release solid dispersions of sparingly water-soluble drugs, ibuprofen and indomethacin. Solid dispersions containing various concentrations of ethylcellulose of different viscosity grades were prepared by the solvent method. Tablets were directly compressed from solid dispersions (40/100 mesh) with 0.5% Primojel as a disintegrant and 0.5% magnesium stearate as a lubricant. In vitro release studies employed a rotating bottle system with Sorenson's buffer solution (pH 7.4). It was found that prolongation of drug release was primarily associated with an increase in amount of ethylcellulose rather than the viscosity grade. Nonetheless, the higher the viscosity grade of ethylcellulose, the slower the release of drug from granular and compressed solid dispersions. The release rate of ibuprofen was faster than that of indomethacin from different solid dispersion formulations.  相似文献   

10.
Objective: The objective of this study was to fabricate a novel nano-bioceramics incorporated lysozyme poly (d, l-lactide-co-glycolide) (PLGA) microsphere.

Methods: The nano-bioceramics was used as a biodegradable and sustained-release antacid to stabilize the lysozyme in the drug release process. First, the nano-bioceramics were prepared by sol-gel method, and then were characterized by energy dispersive X-ray analysis, dynamic light scattering and in vitro degradation test. Second, the lysozyme PLGA microsphere incorporated with nano-bioceramic was fabricated by the S/W/O/W emulsion solvent evaporation method. The microsphere was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV circular dichroism (UV CD). Finally the in vitro drug release and bioactivity test was carried out.

Results: The composition of the nano-bioceramics was 58% SiO2, 36% CaO, 6% P2O5, and the average particle size was 295?nm. The nano-bioceramics incorporated lysozyme PLGA microspheres were prepared by the multi-emulsion method. The SEM results showed that the bioceramics was uniformly distributed in the PLGA microsphere. Results from in vitro lysozyme release test exhibited a prolonged release time for 1month. The FTIR and UVCD results suggested that the lysozyme in the drug release process had a similar secondary structure conformation to the native one. The Micrococcus lysodeikticus test showed that the microspheres incorporated with bioceramics provided long-term protein stability against the acidic environment resulted from PLGA’s degradates and more than 90% of the lysozyme released over the 1 month period was preserved in a bioactive form.

Conclusion: A novel bioceramics incorporated lysozyme PLGA microsphere was prepared with potentials for sustained protein release formulation.  相似文献   

11.
The aim of this work is to explore the possibilities of using hydroxyapatite microspheres (HAP-MS) and polymer coated HAP-MS as the vehicles for the sustained release of small molecular drugs. The adsorption/desorption behaviors of model drug, doxycycline hydrochloride (Dox·HCl), on HAP-MS were systemically studied. Drug loaded HAP-MS was encapsulated by biodegradable PLGA using S/O/W emulsion–solvent evaporation method, and the in vitro drug release was tested. The adsorption kinetics of Dox·HCl onto HAP-MS fitted well to Freundlich model at lower drug concentrations, but when the HAP-MS was incubated in concentrated drug solutions higher than a critical concentration, precipitation of drug from solutions occurred. Rapid desorption or release of Dox·HCl from HAP-MS was observed. While, the release profile of Dox·HCl from PLGA coated microspheres showed steady slow drug release lasted for at least 7 days without obvious burst release. PLGA coated HAP-MS may provide a novel, injectable carrier for loading and long-period sustained release of small molecular, water-soluble drugs.  相似文献   

12.
Background: Oxycellulose (OC) is biodegradable and bioabsorbable cellulose derivative used in medicine to support hemostasis and tissue healing. Recently, its antimicrobial and immunomodulating properties, as well as its potential in modern therapeutic systems as release modifying excipient, drug carrier, and/or mucoadhesive polymer, are widely discussed. Method: To study its last-mentioned characteristics, directly compressed tablets containing 5 mg of cetylpyridinium chloride (CPC) as a model drug and 90 mg of mucoadhesive polymer [oxycellulose sodium (NaOC) alone or in a combination with one of five widely used mucoadhesive polymers] were prepared to ensure 8 hours prolonged release of CPC. Physicochemical and mucoadhesive properties of prepared tablets were evaluated. Results: Based on obtained results, tablets containing OC in combination with hydroxypropylmethylcellulose (Methocel® K100LV) or carboxymethylcellulose sodium showed the best quality parameters (friability < 0.04%, tablet thickness < 2.17 mm, tablet hardness > 85 N, residence time > 256 minutes, mucoadhesive strength > 3.45 mN/mm) and dissolution profiles (more than 81% of CPC released within 8 hours). Conclusion: NaOC embodies excellent compressing, mechanical, and mucoadhesive properties; however, formulation with higher content of NaOC only showed shorter adhesion time (107 ± 7 minutes) and faster drug release (93.66% of CPC released within 2 hours), because of its good solubility in aqueous media.  相似文献   

13.
Due to inflammatory reactions complicating bioabsorbable devices, the aim of this study was to develop and characterize bioabsorbable implants with anti-inflammatory drug releasing properties. Polylactide-co- glycolide (PLGA) 80/20 was compounded with diclofenac sodium (DS) to produce rods. Thermal properties were analyzed using differential scanning calorimetry (DSC). Inherent viscosity (ηinh) was measured to evaluate the drug effect on the extrude polymer. Drug release measurements were performed using UV-spectrophotometer. Five parallel samples from each type of rods were examined, first at 6 hour intervals, then on daily basis, and later twice a week. DS was released in 110 days from thinner rods and in 150 days from thicker rods. Drug release comprised a starting peak, slow release phase, then a high release phase, and a burst release phase. DSC analysis showed that DS containing rods had crystallinity in their structure. In conclusions, it is feasible to combine PLGA 80/20 and DS by using melt extrusion. Released DS concentrations reached local therapeutic levels, but the release profile was complex and therapeutic levels were not reached all the time.  相似文献   

14.
The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81?kg/mm2 tensile strength and 2.47?N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.  相似文献   

15.
Background: Various approaches have been used to retain the dosage form in stomach as a way of increasing the gastric residence time, including floatation systems; high-density systems; mucoadhesive systems; magnetic systems; unfoldable, extensible, or swellable systems; and superporous hydrogel systems. Aim?: The objective of this study was to prepare and evaluate floating microspheres of rosiglitazone maleate for the prolongation of gastric residence time. Method: The microspheres were prepared by solvent diffusion–evaporation method using ethyl cellulose and hydroxypropylmethylcellulose. A full factorial design was applied to optimize the formulation. Results: Preliminary studies revealed that the polymer:drug ratio, concentration of polymer, and stirring speed significantly affected the characteristics of microspheres. The optimum batch exhibited a prolonged drug release, remained buoyant for >12 hours, high entrapment efficiency, and particle size in the order of 350 μm. Conclusion: The results of 32 full factorial design revealed that the concentration of ethylcellulose 7 cps (X1) and stirring speed (X2) significantly affected drug entrapment efficiency, percentage release after 8 h and particle size of microspheres.  相似文献   

16.
The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.  相似文献   

17.
The objectives of this work was preparation and evaluation of the mucoadhesive elementary osmotic pump tablets of trimetazidine hydrochloride to achieve desired controlled release action and augmentation of oral drug absorption. The drug-loaded core tablets were prepared employing the suitable tableting excipients and coated with polymeric blend of ethyl cellulose and hydroxypropyl methylethylcellulose E5 (4:1). The prepared tablets were characterized for various quality control tests and in vitro drug release. Evaluation of drug release kinetics through model fitting suggested the Fickian mechanism of drug release, which was regulated by osmosis and diffusion as the predominant mechanism. Evaluation of mucoadhesion property using texture analyzer suggested good mucoadhesion potential of the developed osmotic systems. Solid state characterization using Fourier-transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction spectroscopy confirmed the absence of any physiochemical incompatibilities between drug and excipients. Scanning electron microscopy analysis showed the smooth surface appearance of the coated tablets with intact polymeric membrane without any fracture. In vivo pharmacokinetic studies in rabbits revealed 3.01-fold enhancement in the oral bioavailability vis-à-vis the marketed formulation (Vastarel MR®). These studies successfully demonstrate the bioavailability enhancement potential of the mucoadhesive elementary osmotic pumps as novel therapeutic systems for other drugs too.  相似文献   

18.
Cellulose acetate (CA) fibers loaded with the ester prodrugs of naproxen, including methyl ester, ethyl ester and isopropyl ester, were prepared through electrospinning using acetone/N,N-dimethylacetamide(DMAc)/ethanol (4:1:1, v/v/v) as solvent. The chemical and morphological characterizations of the medicated fibers were investigated by means of SEM, DSC, XRD and FTIR, as well as the studies of the drug release properties. The results indicated that the morphology and diameter of the fibers were influenced by the concentration of spinning solution, applied voltage, electrospun solvent and the surfactants. The average diameters of the fibers ranged between 100 and 500 nm for three prodrugs. There was good compatibility between CA and three prodrugs in the blended fibers, respectively. In vitro release indicated that constant drug release from the fiber was observed over 6 days. The prodrugs were successfully encapsulated into the fibers, and this system was stable in terms of effectiveness in release.  相似文献   

19.
Clindamycin hydrochloride (CLH) is a clinically important oral antibiotic with wide spectrum of antimicrobial activity that includes gram‐positive aerobes (staphylococci, streptococci etc.), most anaerobic bacteria, Chlamydia and certain protozoa. The current study was focused to develop a stabilised clindamycin encapsulated poly lactic acid (PLA)/poly (D,L‐lactide‐co‐glycolide) (PLGA) nano‐formulation with better drug bioavailability at molecular level. Various nanoparticle (NPs) formulations of PLA and PLGA loaded with CLH were prepared by solvent evaporation method varying drug: polymer concentration (1:20, 1:10 and 1:5) and characterised (size, encapsulation efficiency, drug loading, scanning electron microscope, differential scanning calorimetry [DSC] and Fourier transform infrared [FTIR] studies). The ratio 1:10 was found to be optimal for a monodispersed and stable nano formulation for both the polymers. NP formulations demonstrated a significant controlled release profile extended up to 144 h (both CLH‐PLA and CLH‐PLGA). The thermal behaviour (DSC) studies confirmed the molecular dispersion of the drug within the system. The FTIR studies revealed the intactness as well as unaltered structure of drug. The CLH‐PLA NPs showed enhanced antimicrobial activity against two pathogenic bacteria Streptococcus faecalis and Bacillus cereus. The results notably suggest that encapsulation of CLH into PLA/PLGA significantly increases the bioavailability of the drug and due to this enhanced drug activity; it can be widely applied for number of therapies.Inspec keywords: drug delivery systems, biomedical materials, antibacterial activity, nanoparticles, nanomedicine, microorganisms, polymers, nanofabrication, differential scanning calorimetry, encapsulation, drugs, scanning electron microscopy, Fourier transform infrared spectraOther keywords: Streptococcus faecalis, Bacillus cereus, DSC, stable nanoformulation, monodispersed nanoformulation, pathogenic bacteria, FTIR spectra, molecular dispersion, thermal behaviour, controlled release profile, Fourier transform infrared spectra, differential scanning calorimetry, scanning electron microscopy, drug loading, encapsulation efficiency, polymer concentration, solvent evaporation method, molecular level, drug bioavailability, stabilised clindamycin encapsulated poly lactic acid‐poly (D,L‐lactide‐co‐glycolide) nanoformulation, protozoa, Chlamydia, anaerobic bacteria, gram‐positive aerobes, antimicrobial activity, oral antibiotics, oral delivery, PLA‐PLGA based nanoparticle system, clindamycin hydrochloride  相似文献   

20.
Drug-eluting stent has been proved to decrease the restenosis caused by the stent implantation, owing to the existence of a drug-eluting coating on the stent. For ensuring the effectivity and security of the drug-eluting stent during the service period, the uniform surface, good deformation and stabilized drug release behavior of the stents should be satisfied. In this study, the performances mentioned were studied on stainless steel stents. The results showed that the surface morphology of the coating was affected by the sorts of solvent, the parameters of the spraying process and the addition of the plasticizer. The drug-eluting profile of the coating was influenced by the plasticizer content and PLGA/drug ratio of the coating. Meanwhile, the plasticizer as an additional agent obviously increased the deformation performance of the coating. Optimized parameters for preparation of the drug-eluting coating were investigated to obtain a drug-eluting coating with good integrated performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号