首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Nondegenerate optical parametric oscillator (NOPO) above threshold is a simple set-up to generate entangled beams. To more accurately calculate the entanglement between the generated twin beams from the NOPO, we use the Langevin equations for the NOPO with a higher-transmissivity cavity mirror. The obtained new expressions for the amplitude-difference and phase-sum noise spectra suggest that increasing the transmissivity of the output mirror can enhance the entanglement beyond the previous expectation.  相似文献   

2.
Analysis of the effects of the spontaneously induced correlation on atom–radiation entanglement in an ensemble of two-level atoms initially prepared in the upper energy level and then trapped in a cavity containing a source of a squeezed radiation employing the method of evaluating the coherent-state propagator is presented. It is found that the cavity radiation exhibits squeezing which is directly attributed to the squeezed radiation initially present in the cavity. The intensity of the cavity radiation increases with the squeeze parameter and interaction time. It is also shown that a substantial degree of entanglement between the atomic state and radiation mode exits at a particular time which depends on the coupling constant and squeeze parameter. It is understood that although the squeezed radiation is directly accountable for the cavity squeezing, it significantly destroys the atom–radiation entanglement induced by the correlation between spontaneously emitted radiation and the atoms.  相似文献   

3.
We discuss the generation and evolution of entanglement in a four-level laser with a subthreshold nondegenerate parametric oscillator. The entanglement properties of the two-mode light generated by this scheme is studied. We show that the light produced by the present system is strongly entangled with time evolution. Especially, with the help of the parametric oscillator, the high intensity of the entangled light between the two-mode cavity can be achieved.  相似文献   

4.
We discuss the generation and evolution of a macroscopic entanglement light with a subthreshold non-degenerate parametric oscillator, coupled to a vacuum reservoir. The four-level atoms driven by two classical fields interact with the parametric oscillator. The master equation for the cavity modes of the scheme is derived and analyzed, the entanglement properties of the two-mode light generated by this scheme inside and outside the cavity is studied. We show that the light produced by this system is strongly entangled with time evolution inside and outside a cavity.  相似文献   

5.
We propose an efficient scheme for generating entangled states between a single nitrogen-vacancy (NV) centre in diamond and a superconducting qubit in a hybrid set-up. In this device, the NV centre and the superconducting qubit couple to a nanomechanical resonator and a superconducting coplanar waveguide cavity, respectively, while the microwave cavity and the mechanical resonator are parametrically coupled with a tunable coupling strength. We show that, highly entangled states between the NV centre and the superconducting qubit can be achieved, by means of the Jaynes–Cummings interactions in the NV-resonator and qubit-cavity subsystems which transfer the entanglement between the vibration phonons and the cavity photons to the NV centre and the superconducting qubit. This work may provide interesting applications in quantum computation and communication with single NV spins and superconducting qubits.  相似文献   

6.
Abstract

We propose a deterministic method to generate an arbitrary (pure or mixed) density matrix of a harmonic oscillator. The general density matrices are achieved by manipulating quantum entanglement between the oscillator and an auxiliary oscillator. We discuss how our preparation scheme can be realized by cavity quantum electrodynamics interactions so that a general density matrix of a single-mode electromagnetic field can be created.  相似文献   

7.
In this paper, we analyzed squeezing in the information entropy, quantum state fidelity, and qubit-qubit entanglement in a time-dependent system. The proposed model consists of two qubits that interact with a two-mode electromagnetic field under the dissipation effect. An analytical solution is calculated by considering the constants for the equations of motion. The effect of the general form of the time-dependent for qubit-field coupling and the dissipation term on the temporal behavior of the qubit-qubit entanglement, quantum state fidelity, entropy, and variance squeezing are examined. It is shown that the intervals of entanglement caused more squeezing for the case of considering the time-dependent parameters. Additionally, the entanglement between the qubits became more substantial for the case of time dependence. Fidelity and negativity rapidly reached the minimum values by increasing the effect of the dissipation parameter. Moreover, the amount of variance squeezing and the amplitude of the oscillations decreased considerably when the time dependence increased, but the fluctuations increased substantially. We show the relation between entropy and variance squeezing in the presence and absence of the dissipation parameter during the interaction period. This result enables new parameters to control the degree of entanglement and squeezing, especially in quantum communication.  相似文献   

8.
An investigation is reported of the effects of a Kerr-down conversion nonlinear crystal inside an intrinsically nonlinear optomechanical cavity on the dynamics of the oscillating mirror, the intensity and the squeezing spectra of the transmitted field. We show that in comparison with a bare optomechanical cavity, the combination of the cavity energy shift due to the weak Kerr nonlinearity and increase in the intracavity photon number due to the nonlinear gain medium can increase the normal mode splitting in the displacement spectrum of the oscillating mirror. Our study demonstrates that at high temperatures, when the thermal fluctuations in the system are important, the optomechanical and nonlinearity-induced resonances are distinguishable in the output field spectrum. However, at low temperatures, the presence of both nonlinearities enhances the amplitude of the mechanical-mode contribution to the spectrum and leads to the occurrence of normal-mode splitting in the transmitted field spectrum even for low values of the input power. Also, at low temperatures, the Kerr-down conversion nonlinearity increases the radiation pressure contribution to the degree of squeezing of the transmitted field more than that of a bare optomechanical cavity or a nonlinear cavity (in the absence of optomechanical coupling). Furthermore, we find that for the blue-detuned laser the Kerr nonlinearity extends the domain of the stability of the system and leads to the normal-mode splitting of the movable mirror and noise reduction in the range of frequencies in which a bare cavity is not stable.  相似文献   

9.
We propose a simple scheme to measure squeezing and phase properties of a harmonic oscillator. We treat in particular the case of an electromagnetic field, but the scheme may be easily realized in ion traps. It is based on integral transforms of measured atomic properties as atoms exit a cavity. We show that by measuring atomic polarizations it is possible, after a given integration, to measure several properties of the field.  相似文献   

10.
In this paper, we study theoretically the optomechanical interaction of an interacting condensate of photons with an oscillating mechanical membrane in a microcavity. We show that in the Bogoliubov approximation, due to the large number of photons in the condensate, there is a linear strong effective coupling between the Bogoliubov mode of the photonic Bose–Einstein condensate (BEC) and the mechanical motion of the membrane which depends on the photon–photon scattering potential. This coupling leads to the cooling of the mechanical motion, the normal mode splitting (NMS), the squeezing of the output field and the entanglement between the excited mode of the cavity and the mechanical mode. Since the photon condensation occurs at room temperature, this hybrid system can be potentially considered as a room temperature source of squeezed light as well as a suited candidate for exploring the quantum effects. We show that, on one hand, the non-linearity of the photon gas increases the degree of the squeezing of the output field of the microcavity and the efficiency of the cooling process at high temperatures. On the other hand, it reduces the NMS in the displacement spectrum of the oscillating membrane and the degree of the optomechanical entanglement. In addition, the temperature of the photonic BEC can be used to control the above-mentioned phenomena.  相似文献   

11.
The effect of the field–field interaction on a cavity containing two qubit (TQ) interacting with a two mode of electromagnetic field as parametric amplifier type is investigated. After performing an appropriate transformation, the constants of motion are calculated. Using the Schrödinger differential equation a system of differential equations was obtained, and the general solution was obtained in the case of exact resonance. Some statistical quantities were calculated and discussed in detail to describe the features of this system. The collapses and revivals phenomena have been discussed in details. The Shannon information entropy has been applied for measuring the degree of entanglement (DE) between the qubits and the electromagnetic field. The normal squeezing for some values of the parameter of the field–field interaction is studied. The results showed that the collapses disappeared after the field–field terms were added and the maximum values of normal squeezing decrease when increasing of the field–field interaction parameter. While the revivals and amplitudes of the oscillations increase when the parameter of the field–field interaction increases. Degree of entanglement is partially more entangled with increasing of the field-field interaction parameter. The relationship between revivals, collapses and the degree of entanglement (Shannon information entropy) was monitored and discussed in the presence and absence of the field–field interaction.  相似文献   

12.
We have studied the case in which one mode of the light field in the two-mode squeezed vacuum state evolves in a diffusion channel. By virtue of thermo-entangled state representation and the technique of integration within an ordered product, the evolution formula of the field density operator is given. Its non-classical properties, such as squeezing effect, antibunching effect, the violation of Cauchy–Schwartze inequality and the entanglement property between two modes, are studied. The influences of the squeezing parameter and the dissipation time on the non-classical properties are discussed. The results obtained by the numerical method show that its non-classical properties are all weakened with the dissipation. On the other hand, its squeezing effect and the entanglement property between two modes are strengthened, but its antibunching effect and the violation of Cauchy–Schwartze inequality are weakened with the increase of the squeezing parameter.  相似文献   

13.
Abstract

We propose an experiment that is a variation of the Schrödinger's cat ′paradox' wherein the entanglement between a microscopic system and a macroscopic system is of primary interest. The experiment involves tunable entanglement and serves as a model for controllable decoherence in the context of cavity quantum electrodynamics where atoms interact dispersively with a cavity field initially in a coherent state. The interaction produces an entanglement between the atom and the field, and the degree of entanglement can be probed by subjecting the atom to resonant classical radiation after it leaves the cavity. The amplitude of the resulting Rabi oscillations reflects the degree of the entanglement, there being no Rabi oscillations when the entanglement is maximum. We show that the cavity damping does not affect the experiment.  相似文献   

14.
We study an optomechanical system consisting of an optical cavity and movable mirror coupled through dispersive linear optomechanical coupling (LOC) and quadratic optomechanical coupling (QOC). We work in the resolved side band limit with a high quality factor mechanical oscillator in a strong coupling regime. We show that the presence of QOC in the conventional optomechanical system (with LOC alone) modifies the mechanical oscillator’s frequency and reduces the back-action effects on mechanical oscillator. As a result of this the fluctuations in mechanical oscillator can be suppressed below standard quantum limit thereby squeeze the mechanical motion of resonator. We also show that either of the quadratures can be squeezed depending on the sign of the QOC. With detailed numerical calculations and analytical approximation we show that in such systems, the 3 dB limit can be beaten.  相似文献   

15.
Nonclassical properties exhibited by a chain of cavity modes second harmonic generation in coupled oscillators system, designed by using multichannel optical waveguides, is explored. The solution for the Hamiltonian of the coupled-modes driven by coherent excitation is obtained via an exact formulation of the normal-ordered Fokker-Planck equation. Nonclassical effects, namely the sub-Poissonian photons, squeezing and entanglement are noticed. Multichannel coupling of the coupled oscillators induces new possibilities for correlation between the modes in different channels, henceforth, provides an effective way towards manipulation of quantum light.  相似文献   

16.
A short review of recent developments of the Dicke model in quantum optics is presented. The focus is on the model in a cavity at zero temperature and in the rotating wave approximation. Topics discussed include spectroscopic structures, the giant quantum oscillator, entanglement and phase transitions.  相似文献   

17.
Individual quantum systems may be interacting with surrounding environments having a small number of degrees of freedom. Here we discuss a simple toy model: a system constituted by a two-level atom (atom 1) interacting with a single mode cavity field which is (weakly) coupled to a small environment (atom 2). We investigate the influence of the minimal environment on the dynamics of the linear entropy and the atomic dipole squeezing of atom 1, as well as the entanglement between atom 1 and the field. We also obtain the full analytical solution of the two-atom Tavis–Cummings model for both arbitrary coupling strengths and frequency detunings, necessary to analyse the influence of the field-environment detuning on the evolution of the system’s quantum properties. For complementarity, we discuss the role of the degree of mixedness of the environment by analysing the time-averaged linear entropy of atom 1.  相似文献   

18.
用量子特性函数方法得到了纠缠辅助单模压缩信道在限定输入功率下的经典信息容量的表达式,并进行了数值分析.计算结果表明,信道压缩参数越大,其容量也越大.与没有纠缠辅助下的单模压缩信道的信道容量不同,在纠缠辅助下信道容量一般在信源为压缩态时达到,且此时信源与信道的压缩复参数的相角关系相差π.  相似文献   

19.
Abstract

We describe the theory of optical bistability when atoms are collectively excited within the cavity of a parametric oscillator. Both optical bistability and parametric amplification can squeeze significantly the cavity-field quantum noise. When they are coupled together we find significant changes both on the mean value bistability and on the spectrum of squeezing as the parametric coupling increases. These are calculated directly from the appropriate master equation for the density matrix using a quantum distribution function (positive P) to develop Fokker—Planck and Ito equations.  相似文献   

20.
Tamura K 《Applied optics》2007,46(23):5924-5927
The method of the single-longitudinal-mode (SLM) scan of a pulsed double-grating Ti:sapphire laser oscillator with the grazing incidence cavity configuration was proposed based on the analysis of the optical path length. The SLM scan was experimentally confirmed for this cavity configuration, where the second grating was rotated around an arbitrary point with the translational scan of a back mirror.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号