首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Gain flattened C-band erbium-doped fiber amplifier (EDFA) is demonstrated using a macro-bending method. Various bending diameter and length of high concentration aluminosilicate EDFA are theoretically and experimentally analyzed. By varying the bending radius and the length of the doped fiber, the gain saturation effect as well as the energy transfer from shorter wavelength to a longer wavelength can be controlled to obtain a flattened and broadened gain profile in the C-band region. The amplifier uses a 9 m long erbium-doped fiber (EDF) with erbium ion density of 1.6 × 1025 ions m?3 and bending radius of 6.5 mm as a gain medium. The gain variation of the EDFA is obtained within ±1 dB over 25 nm bandwidth of C-band region.  相似文献   

2.
Lin B  Tjin SC  Zhang H  Tang D  Hao J  Dong B  Liang S 《Applied optics》2010,49(36):6855-6860
We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector.  相似文献   

3.
Zhou M  Luo Z  Cai Z  Ye C  Xu H  Wang J 《Applied optics》2011,50(18):2940-2948
A high-performance multiple-channel erbium-doped fiber laser (EDFL) is proposed and experimentally demonstrated, using graphene-polymer nanocomposite as a multiwavelength equalizer and an asymmetric two-stage polarization-maintaining fiber (PMF) Sagnac loop as a flexible comb filter. At first, the filtering characteristics of the PMF Sagnac loop filter (SLF) are investigated. Both theoretical and experimental results show that it can provide a flexibly switchable and tunable comblike filtering. Then, the two-stage PMF SLF is inserted into a graphene-assisted EDFL cavity for generating multiwavelength oscillation. The extreme-high third-order optical nonlinearity of graphene is exploited to suppress the mode competition of the EDFL, and a stable multiple-channel lasing is observed. By carefully adjusting the polarization controllers in the two-stage PMF SLF, not only can the lasing-line number per channel be switchable between single and multiple wavelengths, but also the wavelength spacing in the triple-wavelength condition can be tunable. In the case of triple wavelengths per channel, up to 12 wavelengths with four channels stable oscillations can be achieved. The multiple-channel EDFL can keep a high extinction ratio of >40 dB and a narrow linewidth of <0.01 nm.  相似文献   

4.
Wideband-tunable nanotube Q-switched low threshold erbium doped fiber laser   总被引:1,自引:0,他引:1  
Dong B  Hu J  Liaw CY  Hao J  Yu C 《Applied optics》2011,50(10):1442-1445
An all-fiber passively wideband-tunable nanotube Q-switched low threshold erbium doped fiber laser is presented. With a low insertion loss carbon nanotube based saturable absorber, C- and L-band tunable Q-switched lasers are achieved by tuning the transmission wavelength of one C-band tunable filter and the other L-band one, respectively. The threshold of the Q-switched operation is only 12.8 mW. The self-mode-locking effect on the Q-switching can be effectively reduced by introducing a spatial hole burning effect with two optical circulators. The tunable wavelength range of the Q-switching laser can be changed by inserting a variable optical attenuator in the laser cavity to tune the gain spectrum.  相似文献   

5.
A new multi-wavelength Brillouin erbium fiber laser (BEFL), which operates in the L-band region with double frequency Brillouin spacing, is demonstrated. This design uses a Raman pump (RP) and a piece of 2?km highly nonlinear fiber as a gain medium. The double frequency spacing is achieved by employing a dual ring configuration, which is formed by utilizing a four-port circulator that removes the odd-order Stoke signals. Twenty Stokes and seventeen anti-Stokes lines, which have optical signal to noise ratio (OSNR) greater than 15?dB, are generated simultaneously with a spacing of 0.16?nm when Brillouin pump and RP powers were fixed at the optimum values of 8 dBm and 40?mW, respectively. The BEFL can be tuned in the range between 1591?nm to 1618?nm. The proposed configuration increases the number of lines generated and the OSNR, and thus allows a compact multi-wavelength laser source to be realized.  相似文献   

6.
A detailed study is presented on the lasing properties of an erbium-doped photonic crystal fiber (PCF) laser. The effects of the host PCF’s structure and laser parameters on continuous-wave laser emission are analyzed by considering the confinement and overlap of pump and signal fields in the gain medium for varying values of pitch, hole diameter, and doping radius. For analysis, we used a finite-difference mode-calculation algorithm devised with standard population and propagation rate-equation solver. Our analysis, applied to an experimentally realized PCF laser, reproduces the observed/reported data, thereby showing the efficacy of our analysis. Finally, a fiber geometry to realize a laser with threshold as low as 6?mW using a short fiber length of 0.52?m is prescribed. The aim of the design is to greatly reduce splice loss with standard single-mode SM28/G.652 fiber while maintaining the optimum performance. These results are new in PCF laser research and should be useful in realizing high performance PCF-based laser devices.  相似文献   

7.
In order to realize a wavelength-tuneable fibre-laser output, a ring-cavity erbium-doped fibre laser based on an all-fibre Mach–Zehnder interferometer (MZI) is proposed and experimentally tested. The MZI consists of a single-mode fibre, two segments of coreless fibre, and a seven-core fibre. For the proposed fibre laser, the length of the gain medium is 4?m and the lasing threshold is 75?mW. By adjusting the loss of the laser cavity, switchable single-wavelength laser emission is realized across the range of 1527.6–1549.9?nm and the wavelength interval is less than 2.4?nm; the peak power difference of each lasing wavelength is less than 7.9?dB. Tuneable dual- and three-wavelength laser outputs were obtained by adjusting the polarization controller. The 3-dB linewidth was less than 0.57?nm. The single- and dual-wavelength laser output power fluctuations were less than 1.4 and 1.7?dB, respectively, when monitored over a period of 30?min.  相似文献   

8.
ABSTRACT

A new compact and wide-band erbium-doped fibre amplifier (EDFA) was demonstrated by combining Hafnia-bismuth Erbium co-doped fibre (HB-EDF) and zirconia–yttria–aluminum Erbium co-doped fibre (Zr-EDF) as a hybrid gain medium, in parallel double-pass configuration. The proposed amplifier comprises a 0.5?m long HB-EDF and 4?m long Zr-EDF optimized for C- and L-band operations, respectively. The HB-EDF and Zr-EDF has erbium ion concentration of 12,500?ppm and 2800?ppm, respectively. At -10 dBm input signal, a wide-band flat gain of 15.7?dB is achieved with gain fluctuation of less than 1.5?dB within a wavelength region from 1525 to 1600?nm. Compared to same configuration of HB-EDF and Zr-EDF amplifiers which are using two pieces of HB-EDF and Zr-EDF, respectively with the same total amount of erbium ions, the proposed EDFA with hybrid gain medium provides even better performances in term of flat gain, bandwidth and noise figure.  相似文献   

9.
We have proposed a switchable mode-locked fiber laser by means of carbon nanotube saturable absorber and fiber Bragg gratings (FBGs). The single-wavelength mode-locking operation can be switched between 1549.5 and 1559.5 nm, respectively, which correspond to the central wavelengths of two FBGs. With the appropriate setting of polarization controller, the stable dual-wavelength operation can be achieved due to the high stability of saturable absorber based on carbon nanotubes. Our method provides a simple, stable, low-cost, dual-wavelength ultrafast-pulsed source.  相似文献   

10.
Wang P  Seah LK  Murukeshan VM  Chao ZX  Yin XJ 《Applied optics》2007,46(23):5866-5869
A novel C-band external-cavity wavelength-tunable laser is proposed. The laser consists of a semiconductor gain chip, a collimating lens, a fixed etalon, a liquid-crystal deflector and a diffraction grating in a Littrow configuration. The lasing wavelength of this tunable external-cavity laser can be tuned to 19 wavelength channels of 100 GHz spacing. All channels are within 2.5 GHz of the ITU grids with a side-mode suppression ratio of approximately 35 dB over the whole range.  相似文献   

11.
Cao H  Chen LR 《Applied optics》2005,44(17):3545-3551
We demonstrate wavelength tuning in single-wavelength and multiwavelength semiconductor fiber ring lasers that are mode locked with an optically injected control signal. A semiconductor optical amplifier is used to provide gain as well as to function as an optically controlled mode-locking element. Linearly chirped fiber Bragg gratings--single or superimposed--are used to define the lasing wavelengths as well as to provide wavelength tunability and allow for multiwavelength operation. We obtain pulses of tens of picoseconds in duration when we inject a sinusoidal optical control signal into the laser cavity, and we can tune the lasing wavelength(s) over the reflection bandwidth(s) of the grating(s) by simply changing the frequency of the injected control signal.  相似文献   

12.
In this paper, we present the realization of a fiber laser source emitting simultaneously over 17 wavelengths spread over the whole C-band. An acoustooptic frequency shifter is placed in the laser ring cavity to suppress the cross-gain saturation effects of the erbium-doped fiber. The emitted wavelengths are fixed by a set of fiber Bragg gratings (FBGs). A power uniformity reaching 6 dB is achieved by inscribing the FBGs while monitoring the laser output. We demonstrate the reliability of this laser as a source for characterization of optical components and networks by the measurement of optical fiber chromatic dispersion. The measurement is performed over the whole telecommunication C-band (1530-1560 nm) using the time-of-flight method. We perform the measurement on three different fibers with different levels of dispersion, namely a standard fiber, a nonzero dispersion shifted fiber, and a dispersion compensating fiber. The results are compared with measurements obtained using a standard network analyzer. The agreement between the two methods is better than /spl plusmn/1%, thus proving the suitability of the developed laser source for this application.  相似文献   

13.
L波段掺铒光纤超荧光光源和放大器研究   总被引:11,自引:1,他引:10  
通过优化铒光纤长度,获得了平坦谱宽达30nm(0.7dB)的L波段超荧光光源,该光源具有7.21dBm的输出功率。在此基础上,研究L波段放大器增益特性,通过对铒光纤长度的进一步优化,用1480nm激光器作前向泵浦源,实验上获得了波长从1565nm~1595nm范围平坦的增益带宽,小信号增益可达22dB。  相似文献   

14.
Feng X  Liu Y  Liu L  Li Y  Yuan S  Kai G  Dong X 《Applied optics》2004,43(34):6334-6338
An actively mode-locked fiber laser with two overlapping cavities is proposed and successfully demonstrated to generate switchable quadruple-wavelength picosecond pulses. The wavelengths are specified by two Bragg gratings in polarization-maintaining and absorption-reducing fiber. By simple adjustment of two polarization controllers, the proposed laser can be made to operate at quadruple wavelength or to switch between wavelengths at room temperature. For wavelength switching, four single-wavelength, six dual-wavelength, and four triple-wavelength operations were performed without changing the repetition rate of the output pulses.  相似文献   

15.
Abstract

We demonstrate the design and operation of novel narrow spacing and stable dual-wavelength fiber laser (DWFL). A 70-cm ytterbium-doped fiber has been chosen as the gain medium in a ring cavity arrangement. Our design includes a short length photonic crystal fiber, acting as a dual-wavelength stabilizer based on its birefringence coefficient and nonlinear behavior and tunable band pass filter (TBPF) to achieve narrow spacing spectrum lasing. Our laser output is considered to be highly stable, with power fluctuation less than 0.8 dB over a period of 15 min. The flexibility and tunability of TBPF, together with polarization controller enable the spacing tuning of the DWFL from 0.03 nm up to 0.07 nm for 1040 nm region, and 0.10 nm up to 0.40 nm for 1060 nm region. The tunable wavelength spacing shows the flexibility of the DWFL in addition to stable and reliable properties of fiber laser in 1-μm region.  相似文献   

16.
A wavelength-spacing switchable multiwavelength erbium-doped fiber lasers incorporating a highly nonlinear fiber (HNLF) based on nonlinear polarization rotation (NPR) has been demonstrated. The intensity-dependent transmission effect originating from NPR ensures room-temperature multi-wavelength lasing, which is further self-stabilized by the four-wave mixing in the HNF. Moreover, the equivalent Lyot birefringence fiber filter with two cascaded birefringence fibers makes the wavelength spacing switchable depending on the effective length of the birefringence fiber. The experimentally obtained multiwavelength outputs agree well with the simulation filter transmission spectra.  相似文献   

17.
Gain improvement in a dual-stage S-band erbium-doped fiber amplifier (S-band EDFA) is demonstrated using a broadband fiber Bragg grating (FBG) operating in the conventional-band (C-band) region or a C-band/S-band wavelength division multiplexing (WDM) coupler which filters out the forward C-band amplified spontaneous emission (ASE) in the amplifier system, thus increasing the population inversion in the S-band region. The gain for the amplifier with the WDM coupler increases by about 8.5 dB with an input signal power of ?40 dBm, compared to that of the conventional dual-stage amplifier. The gain improvement varies from 4.0–9.2 dB at a wavelength region between 1480 to 1512 nm without a significant noise figure penalty.  相似文献   

18.
A tunable short-wavelength band Raman fiber laser using a dispersion shifted fiber as the nonlinear medium is proposed and demonstrated. This approach provides an alternative to the common method of using depressed-cladding, erbium-doped fibers as the gain medium in S-band fiber lasers. The proposed laser has a tuning range of 1508 to 1534?nm as well as an average peak power of about ?11.3?dBm within the range 1518–1530?nm. A high signal-to-noise ratio of approximately 70 dB is obtained from the system at this range.  相似文献   

19.
A multi-wavelength laser source is demonstrated with a semiconductor optical amplifier (SOA) as a gain medium. A multi-wavelength comb with equal spacing is achieved due to Fabry–Pérot modes of the SOA which oscillates in the ring cavity. A 100 m long photonics crystal fiber (PCF) is inserted in the ring cavity to provide a nonlinear gain by four-wave mixing (FWM) so that the output comb spectrum can be greatly broadened and flattened. The stability of the ring laser is also increased due to the efficient FWM phenomenon occurring in the PCF. The SOA-based laser can generate 35 lasing lines with equal spacing of 0.28 nm and extinction ratios of more than 30 dB at room temperature. The number of channels of the multi-wavelength laser can be controlled flexibly by changing the ratio of the coupler used in the ring cavity configuration as well as controlling the polarization state of the oscillating laser.  相似文献   

20.
光纤光栅半导体激光器激射波长与Bragg波长的偏离   总被引:2,自引:1,他引:1  
利用包含光纤布拉格光栅(FBG)反射率分布的光纤光栅外腔半导体激光器(FGSL)的理 论模型,对FGSL 的激射波长进行了研究。结果表明激射波长并不一定在FBG布拉格反射波长处;布拉格反射波长相对于激射波长的偏移量与FBG的反射率分布、半导体增益介质的增益谱分布及增益峰值波长有关;激射波长可大于或小于布拉格反射波长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号