首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An investigation into the effect of semiconductor optical amplifier (SOA) location in an O-band Brillouin SOA fiber laser (BSFL) was performed. Better output peak power flatness was generated by placing the SOA after the nonlinear medium, which is a 20?km true wave fiber (TWF) than placing it before the TWF. A maximum power of six flat output peaks with average power of ?22.0?dBm for a BP (Brillouin pump) wavelength of 1320?nm was obtained, generated from a BSFL with a SOA located after the TWF, compared with three flat Stokes signals with the SOA before the TWF at a BP wavelength of 1310?nm. The flat peak power output for the O-band Brillouin fiber laser is important, especially in producing a good O-band source.  相似文献   

2.
A means of supercontinuum (SC) generation is proposed and demonstrated, using femtosecond mode-locked pulses with sub-megahertz repetition rate based on the nonlinear polarization rotation technique. Total cavity length is approximately 522?m, which includes an additional 500?m single mode fiber (SMF) and the fundamental repetition rate obtained is 404.5?kHz. The mode-locked spectrum has a central wavelength of approximately 1600?nm and a 3?dB bandwidth of 16?nm, which falls within the L-band region. The threshold power for the mode-locked operation is achieved at approximately 52?mW. At pump power of 74?mW, the measured pulse width, pulse energy, and average output power are 70?fs, 18.3?nJ and 7.4?mW respectively. The generated pulses are amplified by a 72.44?mW erbium-doped fiber amplifier before being injected into a 100?m long highly non-linear fiber as the nonlinear medium to generate the SC spectrum. The obtained SC spectrum spans from 1250?nm to more than 1700?nm, with bandwidths of 450?nm at a ?70?dBm output power level. For comparison purpose, the 500?m SMF is removed from the setup and similar measurements are then repeated for this case.  相似文献   

3.
We propose and demonstrate a tunable S-band multiwavelength Brillouin/Raman fiber laser (MBRFL) with a tuning range of between 1490 to 1530 nm. The proposed MBRFL is designed around a 7.7 km long dispersion compensating fiber in a simple ring configuration, acting as a nonlinear medium for the generation of multiple wavelengths from stimulated Brillouin scattering (SBS) and also as a nonlinear gain medium for stimulated Raman scattering (SRS) amplification. A laser source with a maximum power of 12 dBm acts as the Brillouin pump (BP), while two 1420 nm laser diodes with a total power of 26 dBm act as the Raman pumps (RPs). The MBRFL can generate a multiwavelength comb consisting of even and odd Stokes at an average power of -12 dBm and -14 dBm respectively, and by separating the even and odd Stokes outputs, a 20 GHz channel spacing is obtained between two consecutive wavelengths. Due to the four-wave mixing (FWM) effect, anti-Stokes lines are also observed. The multiwavelength comb generated is not dependent on the BP, thus providing high stability and repeatability and making it a highly potential source for many real-world applications. This is the first time, to the knowledge of the authors, that a tunable MBRFL has been developed using SRS to obtain gain in the S-band region.  相似文献   

4.
In this paper a tunable single-longitudinal mode (SLM), short-wavelength band (S-band) fiber laser using a conventional erbium-doped fiber (EDF) with a length of 3?m and a step index erbium dopant profile as opposed to the commonly used depressed cladding erbium-doped fiber (DC-EDF) is proposed and demonstrated. The proposed SLM fiber laser has a tuning range of 1496 to 1507?nm in a ring configuration using two 0.15?m of EDF which acts as saturable absorbers (SAs). The highest peak power measured is about ?0.6?dBm at a wavelength range of 1502 to 1507?nm. The measured signal-to-noise ratio (SNR) is approximately 74?dB for the same wavelength range. The line-width of the SLM output is measured to be 140?kHz.  相似文献   

5.
A tunable short-wavelength band Raman fiber laser using a dispersion shifted fiber as the nonlinear medium is proposed and demonstrated. This approach provides an alternative to the common method of using depressed-cladding, erbium-doped fibers as the gain medium in S-band fiber lasers. The proposed laser has a tuning range of 1508 to 1534?nm as well as an average peak power of about ?11.3?dBm within the range 1518–1530?nm. A high signal-to-noise ratio of approximately 70 dB is obtained from the system at this range.  相似文献   

6.
L波段掺铒光纤超荧光光源和放大器研究   总被引:11,自引:1,他引:10  
通过优化铒光纤长度,获得了平坦谱宽达30nm(0.7dB)的L波段超荧光光源,该光源具有7.21dBm的输出功率。在此基础上,研究L波段放大器增益特性,通过对铒光纤长度的进一步优化,用1480nm激光器作前向泵浦源,实验上获得了波长从1565nm~1595nm范围平坦的增益带宽,小信号增益可达22dB。  相似文献   

7.
A graphene-based Q-switched erbium-doped fiber laser (EDFL) with a tunable fiber Bragg grating (TFBG) acting as a wavelength tuning mechanism is proposed and demonstrated. The proposed setup utilizes a newly-developed ‘ferrule-to-ferrule transfer’ technique to obtain a single graphene layer that allows for Q-switch operation in the EDFL using a highly doped-gain medium. A TFBG is used as a wavelength tuning mechanism with a tuning range of 10 nm, covering the wavelength range from 1547.66 nm to 1557.66 nm. The system has a wide repetition rate range of over 206.613 kHz from 1.387 kHz to 208.000 kHz with pulse durations of between 94.80 μs to 0.412 μs. The laser output is dependent on the pump power, with energy per pulse of 4.56 nJ to 16.26 nJ. The system is stable, with power and wavelength variations of less than 0.47 dBm and 0.067 nm. The output pulse train is free from self-mode locking and pulse jitters.  相似文献   

8.
A simple fiber laser configuration based on a semiconductor optical amplifier (SOA) is proposed for obtaining multi-wavelength oscillation at room temperature, in which a Sagnac loop mirror is used as the wavelength selective component. The SOA has a flat gain of approximately 23dB within a bandwidth of 12 nm at a small input signal power. The loop mirror was constructed using a 3dB coupler and polarization maintaining fiber (PMF). The output spectrum of the proposed laser can be adjusted by controlling the bias current of the SOA and is quite stable at room temperature. At a bias current of 150 mA, six lines are obtained with at least ?40 dBm output power and 25dB signal-to-noise ratio (SNR). The channel spacing and number of lines is determined by the length of polarization maintaining fiber (PMF) used in the loop mirror. The channel spacing of the proposed laser is 1.49 nm with a PMF 3 m. The multi-wavelength comb output can also be tuned by adjusting the operating temperature of the SOA. The multi-wavelength laser has the advantage of a simple configuration, stability at room temperature, a broad wavelength band, and no need for optical pump lasers.  相似文献   

9.
A new multi-wavelength Brillouin erbium fiber laser (BEFL), which operates in the L-band region with double frequency Brillouin spacing, is demonstrated. This design uses a Raman pump (RP) and a piece of 2?km highly nonlinear fiber as a gain medium. The double frequency spacing is achieved by employing a dual ring configuration, which is formed by utilizing a four-port circulator that removes the odd-order Stoke signals. Twenty Stokes and seventeen anti-Stokes lines, which have optical signal to noise ratio (OSNR) greater than 15?dB, are generated simultaneously with a spacing of 0.16?nm when Brillouin pump and RP powers were fixed at the optimum values of 8 dBm and 40?mW, respectively. The BEFL can be tuned in the range between 1591?nm to 1618?nm. The proposed configuration increases the number of lines generated and the OSNR, and thus allows a compact multi-wavelength laser source to be realized.  相似文献   

10.
Liaw SK  Jang WY  Wang CJ  Hung KL 《Applied optics》2007,46(12):2280-2285
We propose and demonstrate a tunable fiber laser based on an optical circulator (OC) and two tunable fiber Bragg gratings (TFBGs). The OC acts as a pump power router to improve the pumping efficiency, and a 4% increase in overall conversion efficiency has been observed. The combined tuning spectra range of two TFBGs could cover the entire C-band spectrum from 1530 to 1560 nm. Stable laser output power above 10 dBm is obtained using 1.9 m of erbium-doped fiber and TFBGs with 50% reflectivity. With power equalization by using variable optical attenuators, the power variation is less than 0.1 dB in the whole C band with narrow linewidth of 0.05 nm. A signal-to-noise ratio of 60 dB and a continuous tuning resolution of 0.5 nm have been achieved. The TFBG-based tunable fiber laser can be a promising light source for WDM transmission and fiber sensor applications.  相似文献   

11.
Gain improvement in a dual-stage S-band erbium-doped fiber amplifier (S-band EDFA) is demonstrated using a broadband fiber Bragg grating (FBG) operating in the conventional-band (C-band) region or a C-band/S-band wavelength division multiplexing (WDM) coupler which filters out the forward C-band amplified spontaneous emission (ASE) in the amplifier system, thus increasing the population inversion in the S-band region. The gain for the amplifier with the WDM coupler increases by about 8.5 dB with an input signal power of ?40 dBm, compared to that of the conventional dual-stage amplifier. The gain improvement varies from 4.0–9.2 dB at a wavelength region between 1480 to 1512 nm without a significant noise figure penalty.  相似文献   

12.
The effects of backward, forward, and bidirectional Raman pumping schemes on stimulated Brillouin scattering (SBS) is investigated in this study. By using a linear cavity, we utilize residual Brillouin pump (BP) and Raman pump (RP) power after each transmission through a 25 km single-mode fiber (SMF) used as a gain medium. The SBS threshold power is reduced in the forward, backward, and bidirectional Raman pumping schemes by 2.5, 1.75, and 2.75 dB, respectively when the 1480 nm RP power is fixed at 150 mW and the BP wavelength is 1580 nm. Surprisingly, it is revealed that the SBS threshold reduction depends strongly and solely on Raman gain and it is independent of the Raman pumping schemes. In addition, the effect of Raman amplification on SBS is more effective at the SBS threshold, especially in the bidirectional and forward schemes.  相似文献   

13.
采用单程后向结构,通过优化掺铒光纤的长度及抽运功率等参量,并尽量提高熔接效率,实现了一种功率达28.58mW(14.56dBm)的高功率宽带光源,在1525-1565nm之间功率高达27.34mW(14.37dBm)。在未加任何滤波器的情况下,其3dB带宽为31.2nm。对一根光纤中前向与后向光光谱特点进行分析比较。结果表明,用一段光纤和一只二极管可实现C L波段的宽带高功率光源,结构紧凑,成本低。  相似文献   

14.
在国内首次采用国产1.47μm激光二极管和掺Er3+/Al3+光纤研制成光电一体化的光纤放大器实用型模块样机。模块净增益27dB,饱和输出功率0dBm,最大输出功率7dBm,光学带宽>20nm,噪声系数<7dB,可供光纤通信和光孤子传输实验系统试用。  相似文献   

15.
We experimentally demonstrate a simple method for generating a multiwavelength Brillouin comb by utilizing a linear cavity of hybrid Brillouin-erbium fiber lasers (BEFLs). The optimization of Brillouin pump wavelength, power, and erbium gain played a significant role in determining the maximum number of Brillouin Stokes signals generated. Simultaneous and stable multiple-wavelength laser output of 22 lines with 10.88-GHz channel spacing has been obtained with good flatness. Various parameters such as 980-nm pump power, Brillouin pump wavelength, and Brillouin pump power that affect the performance of a multiwavelength BEFL system have been investigated. An analysis of the tuning range of the system is presented.  相似文献   

16.
We propose and demonstrate a technique for the generation of an optical frequency comb (OFC) in a periodically poled lithium niobate (PPLN) waveguide based on stimulated Brillouin scattering. A single continuous wave laser is sent to a multi-wavelength Brillouin erbium fibre laser for generating a set of coherent and phase-locked multi-wavelength spectral lines. They are injected into a PPLN waveguide to obtain an OFC. We investigate the influence of the cavity structure on the OFC property in our two different schemes. The number of comb lines is affected by the 980 pump current and Brillouin pump power. The OFCs are tunable in a large range by changing their central wavelength.  相似文献   

17.
A new method of tuning a multi-wavelength Brillouin-erbium fiber laser (BEFL) within a Fabry–Perot cavity by incorporating a low-cost biconic tapered fiber is reported. The biconic tapered fiber was fabricated using a flame elongation technique and it was incorporated into the BEFL system to position the self-lasing cavity modes over a tuning range of 5.5 nm within the erbium-doped fiber gain profile. By injecting the Brillouin pump near to the tunable self-lasing cavity modes, it suppresses the modes and generates stable cascaded Brillouin–Stokes lines with more than 20 dB signal-to-noise ratio.  相似文献   

18.
Jarabo S  Alvarez JM 《Applied optics》1998,37(12):2288-2295
Absorption and stimulated emission coefficients for a pump power at 1480 nm are determined experimentally for three types of erbium-doped silica fiber. Starting from these coefficients and using previous gain measurements, we calculate absorption and stimulated emission cross sections of the erbium laser transition. The results obtained are in good agreement with the ones that appear in the literature.  相似文献   

19.
非对称光纤反射镜的可调谐光纤激光器   总被引:1,自引:0,他引:1  
提出一种非对称窄带光纤环形反射镜结构的可调谐掺铒光纤激光器。980nm泵浦光对掺铒有源光纤进行抽运,高双折射光纤、偏振控制器(PC)和光纤耦合器构成窄带光纤反射镜,窄带光纤反射镜和普通光纤反射镜组成激光谐振腔,利用窄带光纤反射镜工作带宽纳米量级的特性得到单纵模激光。调整偏振控制器改变反射镜对不同波长的反射率,实现可变波长的激光输出。实验表明,该激光器的工作带宽为8nm,120mW泵浦光条件下最大输出功率为4mW,3dB带宽(脉冲的半高宽度)小于0.2nm,边模抑制比为20dB以上,在1527nm~1535nm的波长范围内观察到稳定激光输出。  相似文献   

20.
Giles CR  Mizrahi V 《Applied optics》1997,36(24):5859-5861
A single-frequency laser with a 2-cm-length erbium-doped fiber and fiber-grating coupler mirrors was operated successfully with a 650-nm semiconductor pump laser. Laser pump threshold was 0.91-mW and 34- ?W output power at 1559 nm was obtained for 6-mW pump power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号