首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly conducting and transparent indium tin oxide (ITO) thin films were prepared on SiO2 glass and silicon substrates by pulsed laser ablation (PLA) from a 90 wt.% In2O3-10 wt.% SnO2 sintered ceramic target. The growths of ITO films under different oxygen pressures (PO2) ranging from 1×10−4–5×10−2 Torr at low substrate temperatures (Ts) between room temperature (RT) and 200°C were investigated. The opto-electrical properties of the films were found to be strongly dependent on the PO2 during the film deposition. Under a PO2 of 1×10−2 Torr, ITO films with low resistivity of 5.35×10−4 and 1.75×10−4 Ω cm were obtained at RT (25°C) and 200°C, respectively. The films exhibited high carrier density and reasonably high Hall mobility at the optimal PO2 region of 1×10−2 to 1.5×10−2 Torr. Optical transmittance in excess of 87% in the visible region of the solar spectrum was displayed by the films deposited at Po2≥1×10−2 Torr and it was significantly reduced as the PO2 decreases.  相似文献   

2.
Results from the studies of multicomponent CuO:V2O5 bulk material and thermally evaporated thin films of highly conducting bulk composition prepared at different substrate temperatures are thus compared and discussed. The electronic conductivity is enhanced on increase in the substrate temperature Ts and reaches a maximum value of 12.3 × 10−6Ω−1 cm−1 for Ts = 423 K. X-ray photoelectron spectroscopy studies indicate an increase in the reduced states of vanadium and copper ions in going from the bulk glass to the thin film. Dynamic secondary-ion mass spectroscopy studies on thin films over a depth of 3000 Å show a strong dependence of Ts on the Cu-to-V intensity ratio. Even though stoichiometric values for thin films are achievable by varying the Ts, the oxidation states of Cu in these films are predominantly monovalent. The electrical behaviors of these materials and their thin film counterparts are finally being discussed in relation to the surface analysis data.  相似文献   

3.
We have prepared YBa2Cu3O7−x high Tc superconducting (HTS) thin films on (100) yttria-stabilized zirconia (YSZ) and LaAlO3 (LAO) substrates, using a 2 kW S-gun in an off-axis mode. By varying the temperature of the substrates, films with a axis and c axis orientations were readily obtained. The X-ray diffraction pattern and Laue pattern confirmed that films with a axis orientation exhibited a single-crystal texture. All films had a good mirror-like surface. For films grown on YSZ substrates, scanning electron microscopy (SEM) revealed a clear distinction between the surfaces of the films grown at various temperatures (520–780°C). Films grown on LAO substrates exhibited even smoother and flatter surfaces. The SEM changes will be discussed in correlation with Jc. The best HTS thin films were obtained on LAO substrates at a temperature of 820°C, with Tc=89 K and Jc=1×106 A cm-2 (77 K).  相似文献   

4.
Highly conducting p- and n-type poly-Si:H films were deposited by hot wire chemical vapor deposition (HWCVD) using SiH4+H2+B2H6 and SiH4+H2+PH3 gas mixtures, respectively. Conductivity of 1.2×102 (Ω cm)−1 for the p-type films and 2.25×102 (Ω cm)−1 for the n-type films was obtained. These are the highest values obtained so far by this technique. The increase in conductivity with substrate temperature (Ts) is attributed to the increase in grain size as reflected in the atomic force microscopy results. Interestingly conductivity of n-type films is higher than the p-type films deposited at the same Ts. To test the applicability of these films as gate contact Al/poly-Si/SiO2/Si capacitor structures with oxide thickness of 4 nm were fabricated on n-type c-Si wafers. Sputter etching of the poly-Si was optimized in order to fabricate the devices. The performance of the HWCVD poly-Si as gate material was monitored using CV measurements on a MOS test device at different frequencies. The results reveal that as deposited poly-Si without annealing shows low series resistance.  相似文献   

5.
Appreciable excited-state absorption (ESA) in U2+:CaF2 and Co2+:ZnSe saturable absorbers was measured at λ=1.573 μm by optical transmission versus light fluence curves of 30–40 ns long pulses. The ground- and excited-state absorption cross-sections obtained were (9.15±0.3)×10−20 and (3.6±0.2)×10−20 cm2, respectively, for U2+:CaF2, and (57±4)×10−20 and (12.5±1)×10−20 cm2 for Co2+:ZnSe. Thus, ESA is not negligible in U2+:CaF2 and Co2+:ZnSe, as previously estimated.  相似文献   

6.
The interdiffusion and intermetallic compound formation of Au/Nb bilayer thin films annealed at 200–400 °C have been investigated. The bilayer thin films were prepared by electron beam deposition. The Nb film was 50 nm thick and the Au film was 50–200 nm thick. The interdiffusion of annealed specimens was examined by measuring the electrical resistance and depth-composition profile and by transmission electron microscopy. Interdiffusion between the thin films was detected at temperatures above 325 °C in a vacuum of 10-4 Pa. The intermetallic compound Au2Nb3 and other unknown phases form during annealing at over 400 °C. The apparent diffusion constants, determined from the penetration depth for annealing at 350 °C, are 3.5 × 10−15 m2 s−1 for Nb in Au and 8.6 × 1107minus;15 m2 s−1 for Au in Nb. The Au surface of the bilayer films becomes uneven after annealing at over 400 °C due to the reaction.  相似文献   

7.
Synthesis of AlN by reactive sputtering   总被引:2,自引:0,他引:2  
We present a systematic study of the sub-band gap optical absorption coefficients (hν) in the range 1.2–6 eV vs. deposition-temperature (Ts from 27 to 450°C) films deposited on silica by 13.6 MHz magnetron sputtering of an Al target with 53 and 72% N2 in the reactive mixture. X-ray diffraction, infrared absorption and Raman diffusion are also presented, mainly on films deposited on Si in the same run to help in the characterisation of the films. All signals are specific of AlN polycrystalline films, which are of better quality when deposited with 72% N2. The lowest sub-band gap optical absorption around 5×102 cm−1 is obtained for deposition on silica at Ts=300°C with 72% N2 and is close to that of heteroepitaxial films deposited on sapphire.  相似文献   

8.
Titanium oxide films grown on the surface of a Ni(110) single crystal have been investigated using STM, LEED and AES for Ti coverages ranging from 1 to 10 ml [1 ml of Ti is defined here as equivalent to the number of top layer Ni atoms of Ni(110)]. The oxide overlayers were prepared by vapour phase deposition of Ti followed by oxidation in 1×10−7 mbar O2 at 800 K. Oxidation of Ti coverages between 1 and 10 ML results in STM images indicating the presence of two terminations coexisting on the surface. One termination consists of islands of epitaxial rutile TiO2(110), the second having cell parameters of 2.98±0.1×3.15±0.2 Å. The latter unit cell is consistent with TiO(001) (2.99×2.99 Å2). On oxidation of higher Ti coverages (10 ml), only epitaxial rutile TiO2(110) islands are observed.  相似文献   

9.
Ohmic contacts to the top p-type layers of 4H-SiC p+–n–n+ epitaxial structures having an acceptor concentration lower than 1×1019 cm−3 were fabricated by the rapid thermal anneal of multilayer Al/Ti/Pt/Ni metal composition. The rapid thermal anneal of multilayer A1/Ti/Pt/Ni metal composition led to the formation of duplex cermet composition containing Ni2Si and TiC phases. The decomposition of the SiC under the contact was found to be down to a depth of about 100 nm. The contacts exhibited a contact resistivity Rc of 9×10−5 Ω cm−2 at 21°C, decreasing to 3.1×10−5 Ω cm−2 at 186°C. It was found that thermionic emission through the barrier having a height of 0.097 eV is the predominant current transport mechanism in the fabricated contacts.  相似文献   

10.
Atomic-layer doping of P in Si epitaxial growth by alternately supplied PH3 and SiH4 was investigated using ultraclean low-pressure chemical vapor deposition. Three atomic layers of P adsorbed on Si(100) are formed by PH3 exposure at a partial pressure of 0.26 Pa at 450°C. By subsequent SiH4 exposure at 220 Pa at 450°C, Si is epitaxially grown on the P-adsorbed surface. Furthermore, by 12-cycles of exposure to PH3 at 300–450°C and SiH4 at 450°C followed by 20-nm thick capping Si deposition, the multi-layer P-doped epitaxial Si films of average P concentrations of 1021 cm−3 are formed. The resistivity of the film is as low as 2.4×10−4 Ω cm. By annealing the sample at 550°C and above, it is found that the resistivity increases and the surface may become rough, which may be due to formation of SiP precipitates at 550°C and above. These results suggest that the epitaxial growth of very low-resistive Si is achieved only at a very low-temperature such as 450°C.  相似文献   

11.
Catalytic chemical vapor deposition (Cat-CVD) has been developed to deposit alumina (Al2O3) thin films on silicon (Si) crystals using N2 bubbled tri-methyl aluminum [Al(CH3)3, TMA] and molecular oxygen (O2) as source species and tungsten wires as a catalyzer. The catalyzer dissociated TMA at approximately 600 °C. The maximum deposition rate was 18 nm min−1 at a catalyzer temperature of 1000 °C and substrate temperature of 800 °C. Metal oxide semiconductor (MOS) diodes were fabricated using gates composed of 32.5-nm-thick alumina film deposited at a substrate temperature of 400 °C. The capacitance measurements resulted in a relative dielectric constant of 7.4, fixed charge density of 1.74×1012 cm−2, small hysteresis voltage of 0.12 V, and very few interface trapping charges. The leakage current was 5.01×10−7 A cm−2 at a gate bias of 1 V.  相似文献   

12.
Transparent conducting fluorine-doped tin oxide (SnO2:F) films have been deposited on glass substrates by pulsed laser deposition. The structural, electrical and optical properties of the SnO2:F films have been investigated as a function of F-doping level and substrate deposition temperature. The optimum target composition for high conductivity was found to be 10 wt.% SnF2 + 90 wt.% SnO2. Under optimized deposition conditions (Ts = 300 °C, and 7.33 Pa of O2), electrical resistivity of 5 × 10− 4 Ω-cm, sheet resistance of 12.5 Ω/□, average optical transmittance of 87% in the visible range, and optical band-gap of 4.25 eV were obtained for 400 nm thick SnO2:F films. Atomic force microscopy measurements for these SnO2:F films indicated that their root-mean-square surface roughness ( 6 Å) was superior to that of commercially available chemical vapor deposited SnO2:F films ( 85 Å).  相似文献   

13.
Zirconium doped indium oxide thin films were deposited by the atomic layer deposition technique at 500 °C using InCl3, ZrCl4 and water as precursors. The films were characterised by X-ray diffraction, energy dispersive X-ray analysis and by optical and electrical measurements. The films had polycrystalline In2O3 structure. High transparency and resistivity of 3.7×10−4 Ω cm were obtained.  相似文献   

14.
New materials for a transparent conducting oxide film are demonstrated. Highly transparent Zn2In2O5 films with a resistivity of 3.9 × 10−4 Ω cm were prepared on substrates at room temperature using a pseudobinary compound powder target composed of ZnO (50 mol.%) and In2O3 (50 mol.%) by r.f. magnetron sputtering. MgIn2O4---Zn2In2O5 films were prepared using MgIn2O4 targets with a ZnO content of 0–100 wt.%. The resistivity of the deposited films gradually decreased from 2 × 10−3 to 3.9 × 10−4 Ω cm as the Zn/(Mg + Zn) atomic ratio introduced into the films was increased. The greatest transparency was obtained in a MgIn2O4 film. The optical absorption edge of the films decreased as the Zn/(Mg + Zn) atomic ratio was increased, corresponding to the bandgap energy of their materials. It was found that the resistance of the undoped Zn2In2O5 films was more stable than either the undoped MgIn2O4, ZnO or In2O3 films in oxidizing environments at high temperatures.  相似文献   

15.
Green fluorescence has been obtained under continuous laser excitation in the 780–860 nm range in GdAlO3:Er3+. With the help of the Judd-Ofelt treatment we built a model based on population rate equations to describe its time evolution. We found the intensity parameters to be Ω2 = 2.045 × 10−20 cm2, Ω4 = 1.356 × 10−20 cm2 Ω6 = 1. 125 × 10−20 cm2. Even if a two-photon absorption and a looping mechanism are necessary to well describe the dynamics, the main process responsible for up-conversion is energy transfer between erbium ions.  相似文献   

16.
Using a Zn3In2O6 target, indium-zinc oxide films were prepared by pulsed laser deposition. The influence of the substrate deposition temperature and the oxygen pressure on the structure, optical and electrical properties were studied. Crystalline films are obtained for substrate temperatures above 200°C. At the optimum substrate deposition temperature of 500°C and the optimum oxygen pressure of 10−3 mbar, both conditions that indeed lead to the highest conductivity, Zn3In2O6 films exhibit a transparency of 85% in the visible region and a conductivity of 1000 S/cm. Depositions carried out in oxygen and reducing gas, 93% Ar/7% H2, result in large discrepancies between the target stoichiometry and the film composition. The Zn/In (at.%) ratio of 1.5 is only preserved for oxygen pressures of 10−2–10−3 mbar and a 93% Ar/7% H2 pressure of 10−2 mbar. The optical properties are basically not affected by the type of atmosphere used during the film deposition, unlike the conductivity which significantly increases from 80 to 1400 S/cm for a film deposited in 10−2 mbar of O2 and in 93% Ar/7% H2, respectively.  相似文献   

17.
The deposition rate of amorphous silicon of the order of 0.9 μm/h, has been obtained using a gas mixture of 10% silane (SiH4) in hydrogen (H2), with a RF source of 13.56 MHz. Best films were deposited at a total flow rate of 100–200 sccm, 300°C substrate temperature, 66.7 Pa, and RF power density of 150 mW/cm2. The geometrical configuration of the reaction chamber included a gas injector that was specially designed for this purpose. Films were characterized by Fourier transform infrared (FTIR), secondary ion mass spectrometry (SIMS), and profilometer. In addition, thick p-i-n diodes were prepared and characterized, obtaining reverse current densities lower than 5×10−6 A/cm2 at full depletion.  相似文献   

18.
Lead barium niobate is a new photorefractive material of high interest for a variety of applications including holographic storage. Pb0.5Ba0.5Nb2O6 crystals have been grown by the Bridgman method, and the effects of heat treatments on their photorefractive properties were investigated using Ar ion laser at λ=514.5 nm. The color and absorption spectrum of the crystals varied depending on the oxygen partial pressure during heat treatment. The oxygen diffusivity was estimated to be in the order of 10−6 and 10−5 cm2/h at 425 and 550 °C, respectively. Reduction treatment at an oxygen pressure of 215 mTorr increased the effective density of photorefractive charges about three times from 8.0×1015 to 2.2×1016 cm−3 and made the charge transport more electron-dominant. As a result, the maximum gain coefficient improved from 5.5 to 13.8 cm−1. A diffraction efficiency as high as 70% was achieved in a reduced crystal.  相似文献   

19.
La0.5Sr0.5CoO3−δ (LSCO) thin films were deposited on yttria stabilized zirconia (YSZ) substrates by pulsed laser deposition (PLD) for application to thin film solid oxide fuel cell electrodes. During the deposition, the substrate temperature was varied from 450 to 750°C, and the oxygen pressure in the chamber was varied from 80 to 310 mTorr. Films deposited at 650°C and an oxygen background pressure of 150 mTorr were mostly (100) oriented. Deposition at higher temperatures or under lower oxygen pressures lead to mostly (110) oriented films. Films with low electrical resistivity of 10−3 Ω·cm were obtained.  相似文献   

20.
Chromium disilicide (CrSi2) films 1 000 Å thick have been prepared by molecular beam epitaxy on CrSi2 templates grown on Si(111) substrate. The effect of the substrate temperature on the structural, electrical and optical properties of CrSi2 films has been studied by transmission and scanning electron microscopies, optical microscopy, electrical resistivity and Hall effect measurements and infrared optical spectrometry. The optimal temperature for the formation of the epitaxial A-type CrSi2 film have been found to be about 750°C. The electrical measurement have shown that the epitaxial A-type CrSi2 film is p-type semiconductor having a hole concentration of 1 × 1017cm−3 and Hall mobility of 2 980 cm2 V−1 s−1 at room temperature. Optical absorption coefficient data have indicated a minimum, direct energy gap of 0.34 eV. The temperature dependence of the Hall mobility (μ) in the temperature range of T = 180–500 K can be expressed as μ = 7.8 × 1010T−3cm2V−1s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号