首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A novel conducting poly (N-phenyl-2-naphthylamine) (PPBNA) film was successfully electropolymerized by direct anodic oxidation of its monomer N-phenyl-2-naphthylamine in boron trifluoride diethyl etherate. The prepared PPBNA films showed good redox activity and structural stability even in concentrated sulfuric acid. The impedance spectra of PPBNA films demonstrated that the electron transfer resistance was around 80 Ω. The fluorescent results indicated that the emission band of PPBNA was red-shifted about 30 nm in comparison with that of the monomer. The fluorescent spectra exhibited that the monomer and PPBNA films were excellent blue-light-emitting and blue-green-light-emitting material, respectively.  相似文献   

2.
Electrochemical synthesis of polypyrrole (PPY), doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPSNa), was carried out using chronoamperometric technique. Cyclic voltammetry measurements showed that the electroactivity of PPY films, doped with AMPSNa, increases with the film thickness. Scanning electron microscopy photographs revealed that the PPY particles are in the nano-scale range and that their size depends on the potential at which the PPY has formed. Electrochemical impedance spectroscopy (EIS), in the potential range of + 1.0 and − 1.0 V, revealed in the PPY film charge transfer domination with a semicircle at high frequencies, and anion diffusion dominance at low frequencies. EIS also showed that the charge transfer resistance of PPY film at − 1.0 V is lower than what is expected and that on increasing the thickness of the PPY films, the overall impedance decreases. The proposed equivalent circuit model, based on the double layer capacity and the Warburg impedance, was replaced by two constant-phase elements to fit the experimental work of this study. The values of the fractional exponent of the first constant phase element at approximately 0.5 indicate that the processes have a diffusion-limited nature.  相似文献   

3.
Structural changes induced by electrochemical redox processes or by pH variations on conducting poly-3-methylpyrrole, electrochemically synthesized in NaClO4 acetonitrile solution, have been studied by infrared spectroscopy. With this aim infrared spectra of perchlorate doped poly-3-methylpyrrole films at different oxidation states as well as after immersion in acid (pH = 1) and basic (pH = 12.6) aqueous solutions have been analysed. The existence of proton-doping mechanism in this polymer has been confirmed from the comparative study of spectra of oxidized/reduced and acid/basic treated polymer.  相似文献   

4.
A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.  相似文献   

5.
Self-assembled multilayered films were prepared by alternate deposition of a strong cationic polyelectrolyte, poly(trimethylammonium ethyl methacrylate chloride) and a pH-dependant anionic polyelectrolyte, poly(acrylic acid). The layer-by-layer adsorption was followed in-situ by optical fixed-angle reflectometry and after drying by ellipsometry. A recently developed “substrate thickness method” was applied to calculate the adsorbed amount of polymer from the reflectometric signal. Surface film morphology was imaged before and after drying with atomic force microscopy (AFM). Influence of the number of adsorbed layers, concentration and type of salts on the multilayer growth was examined. The number of adsorbed layers produced a specific effect on the reflectometric signal which is linked to the refractive index of the film. Adjustment of the adsorbed amount of polyelectrolytes was done by changing sodium chloride salt concentration within a range of 10− 3 to 10− 1 M. AFM observations showed a significant evolution in surface morphology and a maximum of surface roughness for films built-up at 10− 2 M. Experiments were then carried out at 10− 3 M in either barium chloride or zinc chloride salts. In the presence of Ba2+ and Zn2+ ions, adsorption of 5 bilayers is completely modified and the surface morphology was smoother than the multilayers obtained using sodium chloride salt.  相似文献   

6.
The plasma polymer thin films were deposited on Si(100) substrate by PECVD (plasma enhanced chemical vapor deposition) method. Liquid cyclohexene was used as single organic precursor. It was heated up to 60 °C and bubbled up by hydrogen gas, which flow rate was 50 sccm (standard cubic centimeters per min). Deposition temperature was room temperature. Plasma was ignited by a radio frequency (RF; 13.56 MHz) of 10 W.As-deposited plasma polymer thin films were treated by e-beam of 300 keV with various adsorption radiation doses. The plasma polymer films, which were treated by high energy e-beam (HEEB), were investigated by FT-IR (Fourier Transform Infrared), XPS (X-ray Photoelectron Spectroscopy), AFM (Atomic Force Microscopy), and the water contact angles.From IR spectra, the intensity of OH functional group is increased by increasing electron dose rate. XPS results also show that the intensity of O1s peak is increased by increasing electron dose rate. C1s peak shows that oxygen bonded at carbon site. The water contact angles are decreased by increasing electron dose rate. From the AFM analysis, we observed the formation of λ-DNA (deoxyribonucleic acid) array on plasma polymer film, which was treated by HEEB with 14 kGy of adsorption radiation dose.  相似文献   

7.
We prepared highly transparent nanocomposite films with high refractive index using fluorescent nanocrystal quantum dots (NQDs). The as synthesized transparent solution of ZnS NQDs was blended with poly(vinylpyrrolidone) (PVP) to prepare nanocomposite thin films. Morphological data, studied by atomic force microscopy (AFM) and X-ray diffraction (XRD), revealed that NQDs were impregnated with polymer matrix and the size distributions (3.0 ± 0.30 nm) of them were preserved in the composite films. The nanocomposite films show high optical transparency (T > 95% at 400 nm and T > 98.5% at 750 nm) and the refractive index is satisfactorily increased (1.565 at 550 nm, 15 wt.% ZnS) compared to the base polymer (1.480 at 550 nm). The nanocomposite films show defectless fluorescence emissions as observed from NQDs before impregnation.  相似文献   

8.
Photosensitive self-assembled membrane of cysteine against copper corrosion   总被引:2,自引:0,他引:2  
Complex self-assembled membrane (SAM) was prepared by modifying the adsorption of cysteine with fluorescent reagent sodium 1-naphthylamine diacetate (NADA) on copper surface. The SAM has a fluorescence emission at 430 nm. Its protective effects against copper corrosion were investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl solution. It suppresses cathodic current densities and shifts the corrosion potential toward more positive values. The variation of the fluorescence intensity is correlated to that of the impedance resistance. The fluorescence detection provides a potential monitoring method for the protection of the SAM on copper surface.  相似文献   

9.
The Al doping effects on high-frequency magneto-electric properties of Zn1 − x − yAlxCoyO (x = 0-10.65 at.%) thin films were systematically studied. In the current work, the Zn1 − x − yAlxCoyO thin films were deposited by magnetron co-sputtering onto quartz substrates. The magneto-impedance spectra of the thin films were measured by an impedance analyzer. Among all the doped films studied, the thin film with 6.03 at.% Al-doping showed the highest ac conductivity and relaxation frequency. To characterize the relaxation mechanism underlying the magneto-electric properties, a Cole-Cole impedance model was applied to analyze the impedance spectra. The analyzed result showed that the magneto-impedance of the Zn1 − x − yAlxCoyO is contributed by multiple processes of magnetization dynamics and dielectric relaxation. The results imply that Zn1 − x − yAlxCoyO may be applicable for high-frequency magneto-electric devices.  相似文献   

10.
The ionic transport in thin film plasticized polymer electrolytes based on polyvinylidene fluoride (PVdF) as the polymer host, silver triflate (AgCF3SO3) as salt and ethylene carbonate (EC) as plasticizer prepared by solution casting technique has been reported. Addition of silver triflate has resulted in an increase in the room temperature (298 K) electrical conductivity of the polymer from 10−6 to 10−5 S cm−1 whereas incorporation of EC as the plasticizer has further enhanced the conductivity value by an order of magnitude to 10−4 S cm−1 owing to the possible decrease in crystallinity of the polymer matrix as revealed by the detailed temperature-dependent complex impedance, silver ionic transference number, Fourier transform infrared and X-ray diffraction measurements.  相似文献   

11.
Liquid–liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions was carried out using tri-iso-octylamine (Alamine 308) as an extractant diluted in kerosene. The percentage extraction of platinum(IV) and rhodium(III) increased with increase in acid concentration up to 8 mol L−1. However, at 10 mol L−1 HCl concentration, the extraction behavior was reversed, indicating the solvation type mechanism during extraction. The quantitative extraction of ∼98% platinum(IV) and 36% rhodium(III) was achieved with 0.01 mol L−1 Alamine 308. The highest separation factor (S.F. = 184.7) of platinum(IV) and rhodium(III) was achieved with 0.01 mol L−1 Alamine 308 at 1.0 mol L−1 of hydrochloric acid concentration. Alkaline metal salts like sodium chloride, sodium nitrate, sodium thiocyanate, lithium chloride, lithium nitrate, potassium chloride and potassium thiocyanate used for the salting-out effect. LiCl proved as best salt for the extraction of platinum(IV). Temperature effect demonstrates that the extraction process is exothermic. Hydrochloric acid and thiourea mixture proved to be better stripping reagents when compared with other mineral acids and bases.  相似文献   

12.
A novel nanocomposite polymer electrolyte membrane composed of PVA polymer matrix and nanosized Montmorillonite (MMT) filler, was prepared by a solution casting method. The characteristic properties of the PVA/MMT nanocomposite polymer membrane were investigated using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), atomic force microscopy (AFM), micro-Raman spectroscopy, and the AC impedance method. The PVA polymer directly blended with nanosized MMT filler (2-20 wt.%) showed good ionic conductivity, thermal, and mechanical properties. The highest ionic conductivity value for the acidic PVA/10 wt.%MMT nanocomposite polymer membrane was around 0.0368 S cm− 1 at 30 °C. The methanol permeability (P) value was 3-4 × 10− 6 cm2 s− 1. It was revealed that the addition of nanosized MMT fillers into the PVA matrix could markedly improve the electrochemical properties of the PVA/MMT nanocomposite membrane. In fact, the PVA/MMT nanocomposite polymer membrane appears to be a good candidate for the DMFC applications.  相似文献   

13.
Yaodong Liu 《Vacuum》2006,81(1):18-21
Polycrystalline Al-doped ZnO films with good photoluminescence property were successfully deposited on quartz glass substrates by pulsed laser deposition (PLD) at room temperature. The films were obtained by ablating a metallic target (Zn:Al 3 wt%) at various laser energy densities (1.0-2.1 J/cm2) in oxygen atmosphere (9 Pa). The structure of the films was characterized by XRD. Ultraviolet photoluminescence centered at 359-361 nm was observed in the room temperature PL spectra of the Al-doped ZnO films.  相似文献   

14.
Polyvinyl alcohol (PVA)/polyaniline (PANI) thin films were chemically synthesized by adopting two step process: initially a thin layer (200 nm) of PVA was spin coated by using an aqueous PVA solution onto fluorine doped tin oxide (FTO) coated glass substrate, afterwards PANI was chemically polymerized from aniline monomer and dip coated onto the precoated substrate. The thickness of PANI layer was varied from 293 nm to 2367 nm by varying deposition cycles onto the precoated PVA thin film. The resultant PVA/PANI films were characterized for their optical, morphological and electrochemical properties. The FT-IR and Raman spectra revealed characteristic features of the PANI phase. The SEM study showed porous spongy structure. Electrochemical properties were studied by electrochemical impedance measurement and cyclic voltammetry. The electrochemical performance of PVA/PANI thin films was investigated in 1 M H2SO4 aqueous electrolyte. The highest specific capacitance of 571 Fg−1 was observed for the optimized thickness of 880 nm. The film was found to be stable for more than 20,000 cycles. The samples degraded slightly (25% decrement in specific capacitance) for the first 10,000 cycles. The degradation becomes much slower (10.8% decrement in specific capacitance) beyond 10,000 cycles. This dramatic improvement in the electrochemical stability of the PANI samples, without sacrificing specific capacitance was attributed to the optimized PVA layer.  相似文献   

15.
In this paper we propose the use of a microwave technique to measure the conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT) films. The PEDOT layers were prepared by electropolymerization from aqueous solutions using both poly(sodium 4-styrene sulphonate) (NaPSS) and sodium dodecyl sulphate (NaDS) acting as monomer solubilizer and dopant for the polymer. The conductive properties of a series of samples produced under different synthesis conditions and characterized by different structures have been investigated by microwave measurements in the frequency range from 40 MHz to 40 GHz by using a Corbino disc geometry. Such technique allows to estimate the mean conductivity of the polymer samples overcoming the limitations of the measuring configurations typically imposed by the conventional d.c. measurements. The morphology of PEDOT films and the structure of polymer chains were studied by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. The correlated morphological, structural and microwave analysis enabled us to evidence several factors that affect the macroscopic scale conductivity of the polymer sample films and to identify the conditions for preparation of PEDOT films with functional properties relevant to technological applications.  相似文献   

16.
Inorganic–organic hybrid poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) microspheres with active hydroxyl groups were incorporated in poly(ethylene oxide) (PEO), using LiClO4 as a dopant salt, to form a novel composite polymer electrolyte (CPE). The polymer chain flexibility and crystallinity properties are studied by DSC. The effects of active PZS microspheres on the electrochemical properties of the PEO-based electrolytes, such as ionic conductivity, lithium ion transference number, and electrochemical stability window are studied by electrochemical impedance spectroscopy and steady-state current method. Maximum ionic conductivity values of 3.36 × 10−5 S cm−1 at ambient temperature and 1.35 × 10−3 S cm−1 at 80 °C with 10 wt.% content of active PZS microspheres were obtained and the lithium ion transference number was 0.34. The experiment results showed that the inorganic–organic hybrid polyphosphazene microspheres with active hydroxyl groups can enhance the ionic conductivity and increase the lithium ion transference number of PEO-based electrolytes more effectively comparing with traditional ceramic fillers such as SiO2.  相似文献   

17.
Organic–inorganic nanocomposites of poly(vinyl alcohol) (PVA)–poly(ethylene oxide) (PEO) blend filled with montmorillonite (MMT) nanoclay up to 10 wt.% concentration were synthesized by aqueous solution-cast technique. The complex dielectric function, electrical conductivity, electric modulus and impedance spectra of the nanocomposites were measured in the frequency range 20 Hz–1 MHz at ambient temperature. A direct correlation was observed between the real part of dielectric function and the mean relaxation time of the polymer chain segmental dynamics, with the exfoliated and intercalated MMT clay structures, and the extent of miscibility between PVA and PEO due to hydrogen bonded bridging through exfoliated MMT clay nanosheets. The large increase of dielectric relaxation time revealed that the dispersed exfoliated nanoscale MMT clay in the polymers blend matrix produces a large hindrance to the polymer chain dynamics. Results confirm that the real part of dielectric function of the nanocomposites can be tailored by varying amount of MMT clay filler for their use as nanodielectric materials in the microelectronic technology.  相似文献   

18.
ZnO thin films were prepared on Si (1 1 1) substrates at various temperatures from 250 to 700 °C using pulsed laser deposition (PLD) technique in order to investigate the structural and optical properties of the films. The structural and morphological properties of the films were investigated by XRD and SEM measurements, respectively. The quality of the films was improved with the increase of the temperature. By XRD patterns, the FWHMs of the (0 0 2) peaks of the ZnO films became narrower when the temperatures were above 500 °C. The FWHMs of the peaks of (0 0 2) of the films were as narrow as about 0.19° when films were grown at 650 and 700 °C. This indicates the superior crystallinity of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The two strongest UV peaks were found at 377.9 nm from ZnO films grown at 650 and 700 °C. This result is consistent with that of the XRD investigation. Broad bands in visible region from 450 to 550 nm were also observed. Our works suggest that UV emissions have close relations with not only the crystallinity but also the stoichiometry of the ZnO films.  相似文献   

19.
High transparent polyimide/titania multi-layer anti-reflective hybrid films   总被引:1,自引:0,他引:1  
In this study, polyimide-titania hybrid thin films (6FDA-6FpDA-4ABA/TiO2, PIT) were prepared from soluble fluorine-containing polyimide and titanium butoxide. The soluble polyimide with carboxylic acid terminal groups (6FDA-6FpDA-4ABA-COOH) was synthesized from the precursor s 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 4,4′-(hexafluoroisopropylidene) dianiline (6FpDA), and 4-aminobenzoic acid (4ABA). Such end groups undergo a condensation reaction with titanium butoxide to provide organic-inorganic bonding and thus prevent macrophase separation. The titania content in the hybrid films was varied from 0 to 90 wt.% (PIT0-PIT90). The effects of TiO2 content on the hybrid film properties and the optimum operating conditions were also investigated. TGA and DSC analysis showed that the decomposition temperature of polyimide was about 468 °C. Td increased as the titania content in hybrid thin films increased. HRTEMM and XRD results indicated the formation of nanocrystalline-titania domains of around 4-11 nm in the hybrid films. AFM, SEM, TEM, and XRD results indicated the formation of well-dispersed nanocrystalline-titania. FTIR spectra indicated that the amidization was complete and that a cross-linked Ti-O-Ti network had formed. UV-vis and n&k analysis showed that the prepared hybrid films had high refractive index (1.931) and good optical properties. Moreover, the prepared polyimide/titania hybrid thin films were further applied to develop a three layer antireflective (AR) coating on glass and PMMA substrates. The results showed that the average reflectance of the AR coating on the glass and PMMA substrates was 0.5% and 0.8%, respectively. The transparency at 550 nm was greater than 90% for both AR coatings.  相似文献   

20.
High density Au nanostructures were fabricated using polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer on glass substrate for the preparation of electrode materials with good stability, high transparency and excellent conductivity. A 1 wt.% polymer solution in toluene was spin coated on glass substrate. Samples were baked for 48 h at 200 °C with a continuous flow of Ar. Patterned polymer film was obtained by removing the PMMA region through exposing ultraviolet irradiation and rinsing in acetic acid. Au thin films with several thicknesses were then deposited onto the patterned glass substrates by thermal evaporation or sputtering. Removing PS cylinders by sonicating in acetone resulted in Au nanopattern on glass substrates. The connecting gold film acts as conductor while the holes allow light pass through it and helps to be transparent. The transmittance with Au film thickness of 7 nm and 4 nm was found to be about 63% and 70%, respectively. The resistivity was in the range 10− 5 Ω cm-10− 6 Ω cm which is comparable with ITO (10− 3 Ω cm-10− 4 Ω cm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号