首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigated the mechanical properties and microstructure of high calcium fly ash geopolymer containing ordinary Portland cement (OPC) as additive with different curing conditions. Fly ash (FA) was replaced with OPC at dosages of 0%, 5%, 10%, and 15% by weight of binders. Setting time and microstructure of geopolymer pastes, and flow, compressive strength, porosity and water absorption of geopolymer mortars were studied. Three curing methods viz., vapour-proof membrane curing, wet curing and temperature curing were used. The results showed that the use of OPC as additive improved the properties of high calcium fly ash geopolymer. The strength increased due to the formation of additional C–S–H and C–A–S–H gel. Curing methods also significantly affected the properties of geopolymers with OPC. Vapour-proof membrane curing and water curing resulted in additional OPC hydration and led to higher compressive strength. The temperature curing resulted in a high early compressive strength development.  相似文献   

2.
Geopolymer concrete is proven to have excellent engineering properties with a reduced carbon footprint. It not only reduces the greenhouse gas emissions (compared to Portland cement-based concrete) but also utilises a large amount of industrial waste materials such as fly ash and slag. Due to these positive attributes, it is becoming an increasingly popular construction material. Previous studies on geopolymer concrete report that heat curing plays an important role in gaining higher compressive strength values (as opposed to ambient curing), and hence the application of this material could be limited to precast members. Therefore, this research was aimed at investigating the effect of heat curing by comparing the mechanical properties such as compressive strength and ductility of ambient cured and heat cured geopolymer concrete samples. It is worth noting that there was marginal strength change due to heat curing. In Australia, fibre-reinforced geopolymer concrete is being used in precast panels in underground constructions. Commercially available geopolymer cement and synthetic fibres are effectively being used to produce elements that are more durable than what is currently used in industry. As a result, this research investigated the effects of polypropylene fibres in geopolymer concrete using 0.05 and 0.15 % fibres (by weight). The addition of polypropylene fibres enhances the compressive strength and the ductility of geopolymer concrete.  相似文献   

3.
In order to use geopolymer mortar as a pavement repair material, a splitting test and a slant shear test are performed to characterize the bond strength of the geopolymer and conventional cement mortar interfaces. Effect of curing time, degradation of the cement mortar under different acid conditions on the bond strength of geopolymer with conventional cement mortar, and comparison of the metakaolin geopolymer with other pavement repair materials are analyzed. It was found that curing time affects the interface bond strength greatly. Metakaolin geopolymer reaches 80% of its 28 day strength in 3 days curing, but shows low strength in 24 h curing. Curing temperature affects the strength of metakaolin geopolymer, however metakaolin geopolymer cured in ambient temperature and the bond strength of 3 days curing through splitting and slant shear tests reaches 3.63 MPa and 16.32 MPa, respectively. Degradation of cement mortar negatively affects the bond strength of geopolymer and conventional cement mortar. Possibility of using metakaolin geopolymer as a repair material is discussed by comparison of this experimental result with these of other repair materials.  相似文献   

4.
Most previous works on fly ash based geopolymer concrete focused on concretes subjected to heat curing. Development of geopolymer concrete that can set and harden at normal temperature will widen its application beyond precast concrete. This paper has focused on a study of fly ash based geopolymer concrete suitable for ambient curing condition. A small proportion of ordinary Portland cement (OPC) was added with low calcium fly ash to accelerate the curing of geopolymer concrete instead of using elevated heat. Samples were cured in room environment (about 23 °C and RH 65 ± 10%) until tested. Inclusion of OPC as little as 5% of total binder reduced the setting time to acceptable ranges and caused slight decrease of workability. The early-age compressive strength improved significantly with higher strength at the age of 28 days. Geopolymer microstructure showed considerable portion of calcium-rich aluminosilicate gel resulting from the addition of OPC.  相似文献   

5.
The aim of this study is to promote the use of available natural dune sand from desert areas as a partial cement replacement. Binary and ternary combinations of ground dune sand (GDS), Portland cement (PC) and ground granulated blast furnace slag (GGBS) were investigated for their effects on the compressive strength of mortar cured under standard or autoclave curing conditions. The results showed that the compressive strength decreased significantly with increasing GDS and GGBS contents under standard curing. However, with autoclave curing, all of the binary and ternary mixtures yielded mortar with a compressive strength higher than that of the control sample. The autoclave-cured ternary combination of 30% GDS, 50% PC and 20% GGBS showed the highest compressive strength. It is possible to use a PC content as low as 10% since the mixture of 30% GDS, 10% PC and 60% GGBS displayed strength comparable to the control sample.  相似文献   

6.
An experimental investigation was undertaken to study the potential use of Jordanian oil shale ash (OSA) as a raw material or an additive to Portland cement mortar and concrete. Different series of mortar and concrete mixtures were prepared at different water to binder ratios, and different OSA replacements of cement and/or sand. The compressive strength of mortar and concrete specimens, cured in water at 23 °C, was determined over different curing periods which ranged from 3 to 90 days. The results of these tests were subjected to a statistical analysis. Equations were developed by regression analysis techniques to relate the effect of batch constituents on the strength developments of OSA mortars and concretes. The models were checked for accuracy by comparing their predictions with actual test results.The obtained results indicated that OSA replacement of cement, sand or both by about 10% (by wt) would yield the optimum compressive strength, and that its replacement of cement by up to 30% would not reduce its compressive strength, significantly. It was found that OSA on its own possesses a limited cementitious value and that its contribution to mortar or concrete comes through its involvement in the pozzolanic reactions. The statistical model developed showed an excellent predictability of the compressive strength for mortar and concrete mixes.  相似文献   

7.
Geopolymer concrete (GPC) is an emerging construction material that uses a by-product material such as fly ash as a complete substitute for cement. This paper evaluates the bond strength of fly ash based geopolymer concrete with reinforcing steel. Pull-out test in accordance with the ASTM A944 Standard was carried out on 24 geopolymer concrete and 24 ordinary Portland cement (OPC) concrete beam-end specimens, and the bond strengths of the two types of concrete were compared. The compressive strength of geopolymer concrete varied from 25 to 39 MPa. The other test parameters were concrete cover and bar diameter. The reinforcing steel was 20 mm and 24 mm diameter 500 MPa steel deformed bars. The concrete cover to bar diameter ratio varied from 1.71 to 3.62. Failure occurred with the splitting of concrete in the region bonded with the steel bar, in both geopolymer and OPC concrete specimens. Comparison of the test results shows that geopolymer concrete has higher bond strength than OPC concrete. This is because of the higher splitting tensile strength of geopolymer concrete than of OPC concrete of the same compressive strength. A comparison between the splitting tensile strengths of OPC and geopolymer concrete of compressive strengths ranging from 25 to 89 MPa shows that geopolymer concrete has higher splitting tensile strength than OPC concrete. This suggests that the existing analytical expressions for bond strength of OPC concrete can be conservatively used for calculation of bond strength of geopolymer concrete with reinforcing steel.  相似文献   

8.
Strengthening the attached old cement mortar of recycled concrete aggregate (RCA) is a common approach to enhance the RCA properties. Accelerated CO2 curing has been regarded as an alternative way to enhance the properties of RA. However, the improvement of the properties of RCA was limited by the shortage of reactive components in the old cement mortar available for the carbonation reactions. In this study, a CO2 curing process associated with a limewater saturation method was performed cyclically on cement mortar samples, aiming to enhance the properties of cement mortars via artificially introducing additional calcium into the pores of the cement mortars. The results indicated that the adopted treatment method promoted the level of carbonation which was demonstrated by higher CO2 uptake by the limewater saturated cement mortar when compared to that without limewater treatment. After 3-cycles of limewater-CO2 treatment, the density of the cement mortar slightly increased by 5.7%, while the water absorption decreased by over a half. For mechanical properties, the compressive and flexural strength were increased by 22.8% and 42.4%, respectively. Compared to the untreated cement mortar samples, the total porosity of cement mortar was reduced by approximately 33% and the densified microstructure therefore resulted in a higher microhardness.  相似文献   

9.
Synthesis and heavy metal immobilization behaviors of slag based geopolymer   总被引:4,自引:0,他引:4  
In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.  相似文献   

10.
Developments in geopolymer construction are gaining more interest nowadays due to the elimination of cement and the consequent effects such as carbon dioxide emission, greenhouse effect, etc. Although the use of fly ash as a binder in the geopolymer system acts as a key solution for the major hazardous effects like land dumping, soil contamination, groundwater pollution, and respiratory diseases, the slow reactivity of the fly ash resulted in the considerable reduction in the strength. In this paper, a novel pretreatment method was employed on the fly ash binder in terms of thermal and mechanical means. Also, a cost-effective nano fly ash powder was synthesized and used as filler material on the geopolymer system. The efficiency of the fabricated geopolymer mortar was assessed by examining the workability, compressive strength, and resistance against chloride ion penetration. The geopolymer mortars with pre-treated fly ash exhibited a highly workable mix of 130% improved flow rate without adding any superplasticizer. Further, the addition of 1% nano fly ash, exhibited the highest compressive strength of 71.22 MPa, confirmed almost nil chloride ion permeability, and sustained 90% residual strength after immersing in the brine solution for 60 days which explored the development of sustainable and cost-effective geopolymer construction in the marine environment.  相似文献   

11.
研究了激发剂、固化温度等外部因素对地聚物力学性能的影响及其机制,以NaOH和Na2SiO3作为激发剂,通过正交试验考察了偏高岭土基地聚物的力学性能对激发剂模数、激发剂浓度、固化温度和固化时间等影响因素的敏感性。通过微量热、红外光谱和扫描电镜-能谱方法分析了激发剂浓度影响聚合反应过程及地聚物性能的作用机理。试验结果表明:激发剂浓度是影响地聚物力学性能的最关键因素,地聚物抗压强度随激发剂浓度增加而提高;次关键因素是激发剂模数,地聚物强度随激发剂模数增大而降低。随着激发剂浓度增大,聚合反应逐渐充分,地聚物力学性能也随之提高;激发剂浓度为80%时聚合反应趋向完全,地聚物强度提高到99.98 MPa,生成物Si/Al大于1。   相似文献   

12.
In this paper, the basic properties viz., workability and strength of geopolymer mortar made from coarse lignite high calcium fly ash were investigated. The geopolymer was activated with sodium hydroxide (NaOH), sodium silicate and heat. The results revealed that the workable flow of geopolymer mortar was in the range of 110 ± 5%–135 ± 5% and was dependent on the ratio by mass of sodium silicate to NaOH and the concentration of NaOH. The obtained compressive strength was in the range of 10–65 MPa. The optimum sodium silicate to NaOH ratio to produce high strength geopolymer was 0.67–1.0. The concentration variation of NaOH between 10 M and 20 M was found to have a small effect on the strength. The geopolymer samples with high strength were obtained with the following practices: the delay time after moulding and before subjecting the sample to heat was 1 h and the optimum curing temperature in the oven was 75 °C with the curing duration of not less than two days.  相似文献   

13.
Inclusion of ground granulated blast-furnace slag (GGBFS) with class F fly-ash can have a significant effect on the setting and strength development of geopolymer binders when cured in ambient temperature. This paper evaluates the effect of different proportions of GGBFS and activator content on the workability and strength properties of fly ash based geopolymer concrete. In this study, GGBFS was added as 0%, 10% and 20% of the total binder with variable activator content (40% and 35%) and sodium silicate to sodium hydroxide ratio (1.5–2.5). Significant increase in strength and some decrease in the workability were observed in geopolymer concretes with higher GGBFS and lower sodium silicate to sodium hydroxide ratio in the mixtures. Similar to OPC concrete, development of tensile strength correlated well with the compressive strength of ambient-cured geopolymer concrete. The predictions of tensile strength from compressive strength of ambient-cured geopolymer concrete using the ACI 318 and AS 3600 codes tend to be similar to that for OPC concrete. The predictions are more conservative for heat-cured geopolymer concrete than for ambient-cured geopolymer concrete.  相似文献   

14.
In this study, the effects of W/B ratios on pozzolanic reaction of by-product biomass ashes, namely rice husk-bark ash (RHBA) and palm oil fuel ash (POFA), were determined. These biomass ashes were ground to the same fineness as that of Type I Portland cement (OPC) and partially replaced OPC at replacement levels of 10-40% by weight of binder. Water to binder (W/B) ratios of 0.50, 0.575, and 0.65 were used. The compressive strengths of mortars were compared to those of mortars made with OPC partially replaced with ground river sand of similar particle size. The results demonstrate that at the same cement replacement levels, the degrees of pozzolanic reaction of RHBA and POFA increase with W/B ratio. In addition, ground river sand with the same particle size of OPC can be used as a non-reactive material to replace OPC for determining the compressive strength due to pozzolanic reaction of biomass ash.  相似文献   

15.
The sustainable development of cement manufacturing requires extension of the raw material base, including large-tonnage waste. Hydrated mortar waste is a promising mineral resource for the production of Portland cements and alternative binders, such as alkali-activated slag cement. The influences of ground-hydrated mortar aged for 3 months on the properties of alkali-activated slag fresh and hardened pastes were performed. The results show that the properties are dependent on the concentration (2.5–60%), cement:sand ratio (1:1–3) and fineness (200–600 m2/kg) of the ground hydrated mortar; the alkali activator (sodium carbonate and sodium silicate); and the curing conditions (normal conditions and steam curing). The fresh paste properties that we considered in this study included the water requirement and the setting time; the hardened paste properties we considered were the water absorption, the density, and the compressive strength after 2, 7, 14, 28, 180 and 360 days of ageing. The ground hydrated mortar improved the early strength and the long-term strength of the alkali-activated slag paste and replaced the slag up to 50%. The factors that affecting the strength of the alkali-activated slag cement with ground hydrated mortar as an additive were, in order of influence, alkali activator type > curing conditions > cement:sand ratio > ground-hydrated mortar fineness.  相似文献   

16.
为提高建筑垃圾砖粉活性,将其与粉煤灰、矿粉、激发剂复合形成建筑垃圾复合粉体材料(Construction waste composite powder materials,以下简称CWCPM)。从宏观和微观两方面研究了CWCPM对砂浆力学性能的影响,并采用灰色关联分析及多元回归分析理论,研究了水灰比、CWCPM掺量与砂浆强度的关联性,建立了砂浆抗压强度与水灰比、CWCPM掺量、龄期之间的定量关系模型。结果表明,CWCPM降低了砂浆早期强度,而其合理的颗粒级配及二次水化反应提高了砂浆后期强度;其中CWCPM掺量为抗压强度的准优因素,抗折强度受水灰比的影响较大;多元回归模型对砂浆抗压强度的预测精度较高,为CWCPM的有效利用提供了理论依据。  相似文献   

17.
Abstract

This paper has investigated the properties of mortars made from binary and ternary blends of metakaolin (MK), palm oil fuel ash (POFA), and ordinary Portland cement (OPC). A total of 17 different mortar mixtures were produced. The OPC in the mixtures was partially replaced by MK, POFA, or a combination of MK and POFA at different replacement levels of (0–30%) by weight of the binder. At the fresh state, the flow (workability) of mortar mixtures was determined, while at the hardened state, the compressive strength and porosity at the ages of 7, 28, and 90 days were evaluated. The results showed that the flow of mortar is boosted with the combined use of MK and POFA compared to when MK is separately used. Besides, improvement in low early compressive strength development and reduction in high porosity from use of POFA occurred with the addition of up to 10% MK content. Therefore, the combination of POFA and MK could be used as a supplementary cementitious material to produce cement-based material of higher quality than OPC.  相似文献   

18.
The properties of a hybrid modified cement mortar (HM) after 5 years storage in a sulphuric acid solution were studied. HM was made by mixing ordinary portland cement (OPC), sand and water and subsequently adding Na2SiO3 (water glass), Na2SiF6, polyvinyl acetate, lignosulphonate, and tributylphosphate. A control mortar (CM) was prepared by mixing OPC, sand, and water. The compressive strength losses after sulphuric acid attack were measured. The microstructures of HM and CM after sulphuric acid attack were observed and analyzed by using scanning electron microscopy (SEM), and the porosity and the pore size distribution were measured by using mercury intrusion porosimetry (MIP). Fourier-transform infrared (FT-IR) spectroscopy was utilized to determine the phases present in HM and CM after sulphuric acid attack. Test results show that many cracks appeared in the near-surface region and many needle-like crystals in the centre region of CM after 5 years sulphuric acid exposure, leading to a higher porosity of 28.6% and a higher strength loss of 50.6%. By contrast, a basically monolithic structure was kept in HM after 5 years sulphuric acid exposure, resulting in a lower porosity of 13.3% and a lower strength loss of 27.4%.  相似文献   

19.
Given global trends and challenges, the development of binders for the production of geopolymer concretes has become a topical area of building science. The purpose of this study is to determine whether granite can replace traditional construction aggregate, such as river sand, during geopolymer production, as well as to demonstrate the effect of the proportion of granite flour on the strength properties of fly ash-based geopolymer mortar. A combination of granite flour, quartz sand, and fly ash in various proportions was used as an aluminosilicate precursor. The scope of the study includes density measurements, compressive and flexural strength tests, abrasion by the Boehme method, and microstructural observations. Based on the obtained results, it can be concluded that granite can be successfully used as a replacement for quartz sand during the production of fly ash-based geopolymers. Moreover, the addition of granite makes it possible to improve the strength properties of geopolymers, compared to a geopolymer composite containing quartz sand.  相似文献   

20.
研究了玄武岩纤维、聚丙烯纤维单独和混杂掺加对水泥砂浆工作性、力学性能和抗裂性的影响.结果表明,在掺率为0.075%~0.20%(体积分数)的范围内,单独掺加玄武岩纤维和聚丙烯纤维均可以不同程度地提高水泥砂浆的抗折强度和早期抗压强度,而对28d抗压强度均有不利影响;在体积掺率相同的情况下,掺加玄武岩纤维的砂浆比掺加聚丙烯纤维的砂浆具有更好的力学性能;玄武岩纤维与聚丙烯纤维以适当比例混杂掺加时,可以得到较掺加单一种类纤维更好的效果;混杂纤维可以有效地改善水泥砂浆的韧性,提高水泥砂浆的抗裂性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号