首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
多孔介质中渗流驱动问题与环境污染和油藏开采等问题密切相关,是当今的研究热点.对具有分子扩散和弥散效应的不可压渗流驱动问题,本文用混合有限元/间断有限元耦合格式来求解,即用混合有限元方法求解压力方程,用对称内罚间断有限元方法逼近浓度方程.运用比剪切算子更为便捷的归纳假设和插值投影,导出了先验hp误差估计.  相似文献   

2.
数学上,多孔介质中一种不可压流体对另一不可压流体的相溶驱动由两个耦合的非线性偏微分方程组成,其中一个是关于压力的椭圆方程,另一个是关于浓度的抛物方程。本文用特征有限元方法结合动态有限元空间来逼近浓度,而压力和达西速度则由混合元方法来同时逼近。通过采用负模估计,我们给出了收敛性分析与误差估计。  相似文献   

3.
对张紧弦在任意有限项集中线性黏性阻尼下的运动方程进行无量纲化,提出求解阻尼混合弦本征问题的一般方法。通过分离变量,将该混合动力学系统的偏微分方程转化为常微分方程,用格林函数的加权和函数表示系统的本征函数,导出系统的本征方程组、本征向量和频率方程,给出了阻尼混合弦本征函数显式解析表达式的一般形式。  相似文献   

4.
以PR状态方程、逸度系数方程、混合法则、相平衡方程组为基础,求解出混合工质特定压力下的泡点温度和露点温度,从而绘制出二元混合工质在特定压力下的气液相平衡图。分析了二元混合工质的露点温度或泡点温度与工质的种类、配比、压力之间的关系。以选取适合脉动热管传热特性的二元混合工质热力参数为例,得到选取混合工质的相应方法及注意事项。  相似文献   

5.
不可压缩可混溶驱动问题迎风区域分裂差分方法   总被引:1,自引:0,他引:1  
结合区域分裂思想,本文给出了一维不可压缩可混溶驱动问题两种非重叠区域分裂迎风差分格式。由于饱和度的计算规模远大于压力方程,因此饱和度方程采用了迎风区域分裂差分法,内边界处和各子区域分别对应显隐格式。在稳定性条件下,给出了 l2 模误差估计,最后给出数值算例验证了理论结果。  相似文献   

6.
提出了一种流固耦合作用下的低频散射声场预报方法。从边界积分方程出发,推导弹性散射中流固耦合方程,通过引入附加质量、附加阻尼、附加压力概念实现解耦。将弹性散射表述为纯刚性散射项与二次辐射项的叠加,建立了刚性散射与弹性散射的联系。与辐射问题不同,散射中流体对结构的作用不仅表现为附加质量和附加阻尼,还存在一个与结构响应无关的压力项,且该压力项是二次辐射项的激励源。采用Fortran编写了边界元算法程序,用DMAP语言实现与Nastran的对接,形成了完整的散射声场预报方法,通过与理论结果对比,验证了预报方法的正确性。圆柱壳散射的计算结果表明:低频散射时弹性不可忽略;圆柱壳厚度对弹性散射强度和指向性有明显影响;肋骨对柱壳散射的影响与振动形式有关,环肋骨对以弯曲模态为主的弹性散射影响很小。  相似文献   

7.
崔明 《工程数学学报》2007,24(5):890-894
本文考虑裂缝孔隙介质中驱动问题的数值方法及理论分析。我们分别对压力方程采用混合元方法,对裂缝系统上的浓度方程采用特征线交替方向有限元方法,对岩块系统上的浓度方程采用交替方向有限元方法,证明了交替方向有限元格式具有最优L~2-模和H~1-模误差估计。  相似文献   

8.
刘伟 《工程数学学报》2006,23(1):139-146
给出了多孔介质中一维混溶驱动问题在时间和空间上进行局部网格加密的有限差分格式,压力方程采用中心差分格式近似,饱和度方程采用修正迎风格式,且在交界面上采用线性插值,并利用极大值原理给出了误差估计。最后给出了数值算例。  相似文献   

9.
在流体力学许多实际问题的数值模拟中,有限体积法由于具有局部守恒性和处理复杂几何区域的离散化能力,因此成为一类非常重要和流行的数值方法.本文提出了二阶混合有限体积法求解Navier-Stokes方程.具体地,在三角网格上,取速度场的试验函数空间为分层二次多项式有限元空间,相应的检验函数空间由分片常数函数与分片二次多项式函数组成.取压力的试验函数空间和检验函数空间均为分片线性有限元空间.对Navier-Stokes方程中的非线性项直接在控制体积上进行离散.在粘度满足一定条件的标准假设下,本文证明了二阶混合有限体积法方程的稳定性,并得到了关于速度与压力的最优阶误差估计,其收敛阶与对应的有限元法结论一致.最后的数值算例验证了本文理论结果的正确性以及本文数值方法的有效性.  相似文献   

10.
本文主要讨论带非局部粘性项水波方程的数值方法.我们建立了一种求解这类粘性水波方程的数值方案.该方案有效解决了非局部粘性项与非线性项的离散问题.所提的格式包括对α阶分数阶项的2-α阶格式和对非线性项的线性化处理的混合格式.我们证明了这种格式是无条件稳定的,并得出线性Crank-Nicolson加2-α格式的收敛阶是O(?t32+N1-m)的结论.一系列的数值例子验证了理论证明的正确性.最后,我们用所提数值格式研究了粘性水波方程的渐近衰减率,并讨论了各种参数项对衰减率的影响.  相似文献   

11.
In this article, we develop a dynamic version of the variational multiscale (D‐VMS) stabilization for nearly/fully incompressible solid dynamics simulations of viscoelastic materials. The constitutive models considered here are based on Prony series expansions, which are rather common in the practice of finite element simulations, especially in industrial/commercial applications. Our method is based on a mixed formulation, in which the momentum equation is complemented by a pressure equation in rate form. The unknown pressure, displacement, and velocity are approximated with piecewise linear, continuous finite element functions. To prevent spurious oscillations, the pressure equation is augmented with a stabilization operator specifically designed for viscoelastic problems, in that it depends on the viscoelastic dissipation. We demonstrate the robustness, stability, and accuracy properties of the proposed method with extensive numerical tests in the case of linear and finite deformations.  相似文献   

12.
A stabilized, mixed finite element formulation for modelling viscoplastic flow, which can be used to model approximately steady‐state metal‐forming processes, is presented. The mixed formulation is expressed in terms of the velocity, pressure and state variable fields, where the state variable is used to describe the evolution of the material's resistance to plastic flow. The resulting system of equations has two sources of well‐known instabilities, one due to the incompressibility constraint and one due to the convection‐type state variable equation. Both of these instabilities are handled by adding mesh‐dependent stabilization terms, which are functions of the Euler–Lagrange equations, to the usual Galerkin method. Linearization of the weak form is derived to enable a Newton–Raphson implementation into an object‐oriented finite element framework. A progressive solution strategy is used for improving convergence for highly non‐linear material behaviour, typical for metals. Numerical experiments using the stabilization method with hierarchic shape functions for the velocity, pressure and state variable fields in viscoplastic flow and metal‐forming problems show that the stabilized finite element method is effective and efficient for non‐linear steady forming problems. Finally, the results are discussed and conclusions are inferred. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
W. Wu  X. Li 《Acta Mechanica》2007,191(3-4):181-193
Summary A mixed finite element method for generalized convection-diffusion equations is proposed. The primitive variable with its spatial gradient and the diffusion flux are interpolated as independent variables. The variational (weak) form of the governing equations is given on the basis of the extended Hu-Washizu three-field variational principle. The mixed element is formulated with stabilized one point quadrature scheme and particularly implicit characteristic-based algorithm for eliminating spurious numerical oscillations. The numerical results illustrate good performances in accuracy and efficiency of the proposed mixed element in comparison with standard finite element.  相似文献   

14.
This paper shows that mixed interpolation is required because of the nature of the pressure terms in the equations. These lead to finite element equations which in many circumstances do not uniquely determine the pressure, if the same interpolations are used for pressure and velocities. Several new combinations of pressure and velocity interpolation are analysed with the aid of a novel diagrammatic technique. In particular we consider some very interesting combinations in which, over nearly all the flow, the pressure and velocity are approximated on elements by biquadratic polynomials which are continuous across element boundaries. The theory of this paper is shown to be in complete agreement with numerical experiment.  相似文献   

15.
The miscible displacement of one incompressible fluid by another in a porous medium is governed by a system of two equations. One is an elliptic equation of the pressure and the other is a parabolic equation of the concentration of one of the fluids. Since the pressure appears in the concentration only through its velocity field, we choose a mixed finite element method to approximate the pressure equation and for the concentration we use the standard Galerkin method. We shall obtain an explicit a posteriori error estimator in L2(L2) for the semi‐discrete scheme applied to the non‐linear coupled system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical method for simulating fluid–elastic solid interaction with surface tension is presented. A level set method is used to capture the interface between the solid bodies and the incompressible surrounding fluid, within an Eulerian approach. The mixed velocity–pressure variational formulation is established for the global coupled mechanical problem and discretized using a continuous linear approximation in both velocity and pressure. Three ways are investigated to reduce the spurious oscillations of the pressure that appear at the fluid–solid interface. First, two stabilized finite element methods are used: the MINI‐element and the algebraic subgrid method. Second, the surface integral corresponding to the surface tension term is treated either by the continuum surface force technique or by a surface local reconstruction algorithm. Finally, besides the direct evaluation method proposed by Bruchon et al., an alternative method is proposed to avoid the explicit computation of the surface curvature, which may be a source of difficulty. These different issues are addressed through various numerical examples, such as the two incompressible fluid flow, the elastic inclusion embedded into a Newtonian fluid, or the study of a granular packing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In an effort to implement Gurson‐type models into a mixed velocity–pressure finite element formulation with the MINI‐element P1 + P1, the algorithm proposed by Aravas (IJNME, 1987) to integrate the pressure dependent plasticity as well as the formulations of consistent tangent moduli have been analyzed. This work firstly reviews and clarifies the mathematical basis of the formulations used by Aravas (IJNME, 1987) and demonstrates the equality of the tangent moduli formulations proposed by Govindarajan and Aravas (CNME, 1995) and Zhang (CMAME, 1995), which are widely used in the literature. A unified formulation to calculate the tangent moduli is proven, and its accuracy is also investigated by the finite difference method. The implementation of the Gurson–Tvergaard–Needleman model is then detailed for the mixed velocity–pressure finite element formulation, which employs the MINI‐element P1 + P1. Due to the particularity of this element, one needs to calculate two tangent moduli instead of one. The formulas for calculating the ‘linear tangent modulus’ and the ‘bubble tangent modulus’ are then detailed. Finally, comparison tests are carried out with ABAQUS (Dassault System, Simulia Corp., Providence, RI, USA) in order to validate the present implementation for both homogeneous and heterogeneous deformations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes a combined boundary element and finite element model for the solution of velocity–vorticity formulation of the Navier–Stokes equations in three dimensions. In the velocity–vorticity formulation of the Navier–Stokes equations, the Poisson type velocity equations are solved using the boundary element method (BEM) and the vorticity transport equations are solved using the finite element method (FEM) and both are combined to form an iterative scheme. The vorticity boundary conditions for the solution of vorticity transport equations are exactly obtained directly from the BEM solution of the velocity Poisson equations. Here the results of medium Reynolds number of up to 1000, in a typical cubic cavity flow are presented and compared with other numerical models. The combined BEM–FEM model are generally in fairly close agreement with the results of other numerical models, even for a coarse mesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号