首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
In the present work,pulse current deposition is used to deposit evenly distributed and uniformly sized Ag nanoparticles onto a TiO_2 nanotube array as photoelectrode in dye-sensitized solar cells(DSSCs),and the size and amount of loading Ag nanoparticles are controlled by the pulse deposition time.Due to the enhanced light absorption and electron—hole separation caused by plasmon effect,DSSCs based on Ag-modified TiO_2nanotube arrays show higher energy conversion efficiencies than those based on bare nanotubes with the same tube length.Particularly,DSSC based on nanotubes modified using pulse deposition time 1 s/3 s delivers the highest energy conversion efficiency of 1.68%and the largest short-circuit current of 4.37 mA/cm~2,while DSSC consisting of bare nanotubes exhibits efficiency of 1.20%and short-circuit current of2.27 mA/cm~2,which represents a 40%enhancement of cell efficiency in DSSC based on Ag-modified TiO_2nanotubes.It is also noted that overly long pulse deposition time will not further increase DSSC efficiency due to agglomeration of Ag particles.For example,when the pulse deposition time is increased to 2 s/6 s,DSSC based on Ag-modified nanotubes exhibits a lower efficiency of 1.42%.Moreover,high-concentration TiCl_4treatment on TiO_2 nanotube arrays can further increase the energy conversion efficiencies to 3.82%and2.61%for DSSC based on Ag-modified TiO_2 nanotubes and DSSC based on bare TiO_2 nanotubes,respectively,by significantly creating more surface area for dye loading.  相似文献   

2.
In the present study,morphology,size distribution,structure,biocompatibility and magnetic properties of potassium ferrite nanoparticles(KFeO_2 NPs),synthesized by conventional sol—gel method have been reported.The formation of spherical nanoparticles with orthorhombic structure has been confirmed by scanning electron microscopy and X-ray diffraction.The particle size,as obtained by transmission electron microscopy has been found to be in the range of 4—7 nm.Further,the size distribution has been scrutinized using Analyse-it software,where a platykurtic feature in the size distribution was observed.Fourier transform-infrared spectroscopy and thermogravimetric analysis showed the formation of metal(Fe,K) bonds at Neel temperature of 337℃.Vibrating sample magnetometer analysis revealed the superparamagnetic behaviour of the synthesized KFeO_2NPs,with saturation magnetization of 25.72 emu/g.In vitro cytotoxicity test,using MTT assay,on T cell lines(Jurkat cells) showed that KFeO_2 NPs are biocompatible at a particle concentration of 100 |j.g/ml.  相似文献   

3.
A uniform, compact, and well adherent conversion coating of magnesium hydroxide has been formed on bioresorbable magnesium disks by means of a hydrothermal technique. Electrochemical results indicate that the coating brings about a significant reduction in magnesium corrosion in phosphate buffered saline (PBS) solution. It is also observed that corrosion resistance of the coating increases with an increase in treatment time, which in turn, increases the coating thickness. The protective behavior of magnesium hydroxide coating is attributed to its chemical inertness in PBS solution. The coatings are found to be free from pores that reduce the direct contact between corroding media and underlying magnesium.  相似文献   

4.
The thermal expansion behavior of aluminum matrix composites reinforced with hybrid (nanometer and micrometer) Al2O3 particles was measured between 100 and 600℃ and compared to theoretical models. The results revealed that the nanoparticle concentration had significant effect on the thermal expansion behavior of the composites. For the composites with lower nanoparticle concentration, their coefficient of thermal expansion (CTE) is determined by a stress relaxation process. While for the composites with higher nanoparticle concentration, their CTE is determined by a percolation process.  相似文献   

5.
A 6 mm-thick SiCp/2009AI composite plate was successfully joined by friction stir welding (FSW) using an ultrahard material tool to investigate the evolution of the microstructure and the strength in the nugget zone (NZ). While some SiC particles were broken up during FSW, most of them rotated in the matrix. Large compound particles on the interfaces were broken off during FSW, whereas the amorphous layer and small compound particles remained on the interfaces. The dynamically recrystallized AI grains nucleated on the surface of fractured SiC particles during FSW, forming nano-sized grains around the SiC particles. The yield strength of the NZ decreased slightly due to the variation in the size, shape, and distribution of the SiC particles. The clean interfaces were beneficial to the load transfer between SiC particles and AI matrix and then increased the ultimate tensile strength of the NZ.  相似文献   

6.
Electrochemical studies of the effect of hydrodynamic conditions on corrosion inhibition of Cu—Ni(90/10) alloy in synthetic seawater and sulphide containing synthetic seawater by 1,2,3-benzotriazole(BTAH) are presented.Impedance,potentiodynamic polarization and cyclic voltammetric(CV) studies are employed in the present investigation.The studies are carried out by using Cu—Ni(90/10) alloy rotating disc electrode at different rotation speeds and at different immersion periods.Reynolds numbers at each rotation speed infer that the flow of seawater is laminar.With increasing rotation speed of the electrode immersed in seawater without sulphide and BTAH,both the charge transfer resistance(R_(ct)) and film resistance(R_(film)) are increased.However,in the presence of sulphide ions and without BTAH,both the R_(ct) and R_(film) are found to decrease with increasing rotation speed at identical immersion periods.Interestingly,when BTAH is added to seawater or seawater containing sulphide,both the R_(ct) and R_(film) are increased to such a great extent that an inhibition efficiency of 99.99%is obtained.In the presence of BTAH,the phase angle Bode plots are more broadened and the maximum values of phase angle are increased to a value close to 90° as the rotation speed is increased.The BTAH film is highly protective even under hydrodynamic condition also.Potentiodynamic polarization studies infer that BTAH functions as a mixed inhibitor under hydrodynamic conditions also.CV studies reveal that the protective BTAH film is stable even at anodic potentials of +850 mV vs Ag/AgCI.  相似文献   

7.
The microstructures of the as-rolled magnesium alloy subjected to dynamic plastic deformation along the rolling direction have been investigated.Mostly one {1012} twin variant or a twin variant pair is activated in a grain,leading to a parallel {1012} twin lamellar structure.At the stage of twinning-dominated deformation(ε~8%),lamellar thickness decreases significantly with strain,from 5.55 to 2.49μm.The evolution of lamellar thickness during deformation is directly related to {1012} twin activity.When plastic strain is greater than ~8%,the twin lamellar structure disappears because the volume fraction of twins almost saturates at a value of ~90%.  相似文献   

8.
Rubbers have been well accepted for modifying brittle epoxies but rubber modified epoxies usually posses lowered tensile strength though enhanced ductility and fracture resistance. In this work, a polyethylene glycol (PEG-4000) is used to modify diglycidyl ether of bisphenol A/methyltetrahydrophthalic anhydride system for enhancing cryogenic tensile strength, ductility and impact resistance. The results display that the cryogenic tensile strength, ductility (failure strain) and fracture resistance (impact strength) are all enhanced for the modified epoxy system at proper PEG contents. The maximum tensile strength (127.8 MPa) at the cryogenic temperature (77 K) with an improvement of 30.1% is observed for the modified system with the 15 wt% PEG content. The ductility and impact resistance at both room temperature and cryogenic temperature are all improved for the modified epoxy system with proper PEG-4000 contents. These observations are explained by the positron annihilation lifetime spectroscopy results and scanning electron microscopy results. Moreover, the glass transition temperature decreases slightly with increasing PEG content.  相似文献   

9.
Rare earth Sm~+ ion doped potassium hydrogen phthalate(KHP) single crystal was grown by slow evaporation technique.Single crystal and powder X-ray diffraction analyses confirm the crystalline perfection of Sm~+ ion doped KHP crystal.The functional groups of pure and Sm~+ ion doped KHP crystals were identified by Fourier transform infrared spectroscopy(FTIR) spectral studies.Thermogravimetric and differential thermal analyses were carried out to study the thermal behavior of the grown crystals.UV—Vis studies explored the optical transmittance of the grown crystals in the entire visible region.The mechanical strength and etching studies were performed to assess the perfection of the pure and Sm~+ ion doped KHP crystals.The refractive index and birefringence properties of the grown crystal were analyzed.The second harmonic generation efficiency of Sm~+ ion doped KHP crystals was observed by Kurtz—Perry powder test.  相似文献   

10.
In this work, mesoporous Au/TiO2 composites have been synthesized and tested on photodegradation of methylene blue dye solution. Mesoporous TiO2 prepared at 450 °C using triblock polymer F127 as structure-directing agent was applied as substrate, while various HAuCl4 concentrations were used for Au loading through deposition-precipitation method using urea as precipitator and hydrogen reducing process. The influences of Au loading on the microstructures of mesoporous TiO2 including degree of dispersion, particle size, surface area, light absorption, and band gap were studied with transmission electron microscopy (TEM), X-ray diffraction (XRD), diffuse reflection infrared Fourier transformed spectroscopy (DRIFT), N2 adsorption–desorption isotherm analysis (BET), and UV–Vis diffuse reflectance spectra. With Au loading, the size of TiO2 nanoparticles in Au/TiO2 composites is similar as that of TiO2 substrate. However, the degree of dispersion was greatly improved. Furthermore, an obvious surface plasmon resonance centered at 570 nm was found in UV–Vis diffuse reflectance spectra for Au/TiO2 composites. Au loading also induced an obvious red shift of light absorption from UV region to visible region and strengthened both UV and visible light absorption in contrast to substrate. Photodegradation results verified that photocatalytic activity of mesoporous TiO2 was improved by Au loading. 0.25%Au/TiO2 composite showed the highest activity, which may be ascribed to its high surface hydroxyl content and the formed Schottky junction after Au loading. These results suggested that noble metal modification is a promising way to synthesize photocatalysts with both high activity and visible light sensitivity.  相似文献   

11.
12.
13.
Au/SiOx nanocomposite films have been fabricated by co-sputtering Au wires and SiO2 target using an RF magnetron co-sputtering system before the thermal annealing process at different temperatures. The structural and optical properties of the samples were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), optical transmission, and reflection spectroscopy. XPS analysis confirms that the as-prepared SiOx films are silicon-rich suboxide films. FESEM images reveal that with an increase in annealing temperature, the embedded Au NPs tend to diffuse toward the surface of the SiOx films. In IR spectra, the intensity of the Si-O-Si absorption band increases with the annealing temperature. Optical spectra reveal that the position and intensity of the surface plasmon resonance (SPR) peak are dominated by the effect of the inter-particle distance and size of the Au NPs embedded in the SiOx films, respectively. The SPR absorption peak shows the blue-shift from 672 to 600 nm with an increase in annealing temperature. The growth of silica nanowires (SiOx NWs) is observed in the film prepared on a c-Si substrate instead of a quartz substrate and annealed at temperatures of 1000 °C.  相似文献   

14.
15.
以聚丙烯酰胺丙烯酸和聚乙二醇/聚丙烯酸两种水凝胶作为模板, 丙烯酸做抑制剂合成纳米颗粒。水凝胶的缓慢吸水和网络结构, 减缓了钛酸四丁酯的水解速率, 并抑制TiO2的颗粒长大, 制备出的TiO2纳米粉粒径分布窄, 且为锐钛矿相结构。对比研究发现, 聚乙二醇/聚丙烯酸水凝胶的吸水膨胀率更小, 前驱体溶液的稳定性更高。选用聚乙二醇/聚丙烯酸前驱体溶液, 采用微流控技术制备TiO2微球, 制备出的微球具有球形度好、单分散的优点, 焙烧后TiO2的晶体结构为锐钛矿。  相似文献   

16.
We have investigated the fabrication of surface plasmon resonance (SPR) biosensors using self-assembled monolayers (SAMs) and adsorbed gold nanoparticles. The SAM of 1,10-decanedithiol was first fabricated onto a gold substrate. Gold nanoparticles were then chemisorbed onto the SAM surface by bonding with the terminal thiol groups, forming a sensor that can be used to immobilize proteins. Bovine serum albumin (BSA) was used as a test protein in this study. Several spectroscopic and microscopic techniques were used to investigate both the SAM and the chemisorption of gold nanoparticles at the SAM surface. Our results confirm the covalent bonding of the gold nanoparticles onto the SAM. Surface plasmon resonance (SPR) was used to study both the adsorption of BSA to the SAM surface and to the gold nanoparticle-coated SAM. For SAM surfaces with adsorbed gold nanoparticles a larger SPR response to BSA than to the sensors with a bare SAM is observed.  相似文献   

17.
Thickness and refractive index of Au films thermally evaporated onto glass substrates and with an underlayer of Cr are determined from surface plasmon resonance. The results for the thickness are found to agree very well with those from X-ray reflectivity when a simple model of layers with flat interfaces is used. Plasmon propagation along thin films is influenced by radiative damping due to scattering from surface roughness. To study this influence the surface roughness of the glass substrate, Cr an Au layers are measured by X-ray reflectometry and the results used to introduce three intermediate layers with effective refractive indices and thicknesses corresponding to the roughness. Then Fresnel's equations are used to fit the reflectivity and to deduce the layer properties. It is found that the roughness affects to a great extent the optical parameters of the Au films even when it is smaller than 1 nm. In particular, the absolute value of real part of the dielectric constant decreases while its imaginary part increases when those effects are not taken into account.  相似文献   

18.
19.
利用二次阳极氧化法成功制备了双层TiO2纳米管周期结构。通过改变氧化电压可以有效地调整双层TiO2纳米管的管径, 从而控制样品的形貌。通过实验优化确定双层TiO2周期结构的制备条件为一次氧化电压60 V, 二次氧化电压40 V。利用原位光还原法, 在TiO2周期结构表面负载了Au纳米粒子并研究了前驱体溶液浓度与光照时间对样品的影响。在0.05 mmol/L HAuCl4溶液中光照90 min后得到的Au纳米粒子具有最优的形貌与分布。这种绿色的原位光还原法因为避免使用保护剂与还原剂而有效提高了Au纳米粒子的催化活性。制备所得的Au/TiO2周期异质结构可以直接作为工作电极用于乙醇的电催化氧化, 并表现出了良好的催化活性与稳定性。除了Au纳米粒子, 其他金属纳米粒子如Ag、Pd、Cu等均可通过该方法成功负载于双层TiO2纳米管周期结构上。这种新型的异质结纳米结构作为燃料电池的阳极材料表现出了巨大的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号