首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polymethylmethacrylate (PMMA) thin films containing Yb(pms)3(H2O)8 (pms: bis(perfluoromethanesulfonyl)imide) and dipyridophenazine with DMSO and DMSO-d6 were fabricated on the glass substrates. The films show photosensitized near-IR luminescence under UV light irradiation of 370 nm in wavelength. The emission quantum yields of Yb(III) complex in PMMA (film 1), PMMA containing DMSO (film 2), and PMMA containing DMSO-d6 (film 3) thin films are 0.18, 0.26, and 0.26%, respectively. The emission quantum yields of films 1 and 2 were considerably enhanced after the annealing at 80 °C.  相似文献   

3.
New poly(amide–imide)s (PAIs) 3ad and 3ad with methoxy-substituted triphenylamine (TPA) units were prepared by the direct polycondensation from various imide ring-preformed dicarboxylic acids 2ad with 4,4′-diamino-2″,4″-dimethoxytriphenylamine (1) and 4,4′-diamino-4″-methoxytriphenylamine (1′), respectively, using triphenyl phosphite and pyridine as condensing agents. For the comparative study, the referenced PAIs 3ad without methoxy substituents on the TPA unit were also prepared from 2ad with 4,4′-diaminotriphenylamine (1″). All the polymers were readily soluble in many organic solvents and could be solution-cast into tough and flexible polymer films. The glass-transition temperatures (Tgs) of these PAIs ranged from 196 to 298 °C and the 10% weight-loss temperatures were in excess of 445 °C in nitrogen. Cyclic voltammograms of the PAI films cast onto the indium–tin oxide (ITO)-coated glass substrate exhibit one reversible oxidation redox couples at 0.73–0.89 V vs. Ag/AgCl in an electrolyte/acetonitrile solution. The polymer films revealed good electrochemical and electrochromic stability, with coloration change from a pale yellow neutral form to a green oxidized form. After over 100 redox cycles, the polymer films still exhibited good redox and electrochromic reversibility. The 3 and 3′ series PAIs exhibited enhanced redox-stability and electrochromic performance as compared to the parent 3″ analogs without methoxy substituents on the TPA unit.  相似文献   

4.
A new Pb(II) one-dimensional coordination polymer, [Pb(µ-NO2)(µ-pyc)(H2O)]n (), Hpyc = 2-pyridinecarboxylic acid} was prepared and characterized by elemental analyses, powder XRD diffraction and IR spectroscopy. Compound 1 was structurally characterized by single-crystal X-ray diffraction and one-dimensional coordination polymer with coordination environment of PbNO6. The thermal stability of compound 1 showed that compound 1 decomposes at 110-500 °C and the final product is PbO. This polymeric precursor has been used to make PbO nano-particles using two different surfactants. The new nano-structure was characterized by scanning electron microscopy and X-ray powder diffraction. This study demonstrates that the coordination polymers may be suitable precursors for the preparation of nanoscale materials.  相似文献   

5.
Kai Yuan  Fan Li  Lie Chen  Yiwang Chen 《Thin solid films》2012,520(19):6299-6306
A cross-linked block copolymer poly(3-hexylthiophene)-b-poly(zinc dimethacrylate) (P3HT-b-PZn(MA)2), which acted as precursor for the preparation of poly(3-hexylthiophene)/ZnO (P3HT/ZnO) hybrid film by in-situ hydrolysis, was rationally designed and synthesized via nitroxide-mediated in-situ polymerization of zinc methacrylate (Zn(MA)2) using poly(3-hexylthiophene) alkoxyamine (P3HT-TIPNO) as macroinitiator for the purpose of stabilizing the P3HT/ZnO hybrid solar cells. The cross-linking was confirmed by the insolubility of the film in organic solvents and Fourier-transform infrared experiment. With the function of the cross-linked template, the diffusion of ZnO nanoparticles prepared by in-situ hydrolysis could be lowered to suppress the formation of large aggregations, which favored the formation of a better and more stable interpenetrating network and provided more heterojunction interfaces for exciton dissociation. As a result, the inverted device based on cross-linked P3HT/ZnO hybrid film obtained by in situ hydrolyzing P3HT-b-PZn(MA)2 block copolymer yielded a power conversion efficiency of 0.45% under AM 1.5G illumination from a calibrated solar simulator with an intensity of 100 mW/cm2, and the deterioration of the photoconversion performance was suppressed in the hybrid solar cells with the cross-linked P3HT/ZnO compared to cells with non-cross-linked P3HT/ZnO obtained by in situ hydrolyzing P3HT-TIPNO/Zn(MA)2 blend film.  相似文献   

6.
Two π-conjugated small molecules based on diketopyrrolopyrrole (DPP), DPP4T and DPP2F2T, were synthesized using the Suzuki coupling reaction. DPP4T and DPP2F2T contained furan and thiophene, respectively, next to a DPP core. Organic photovoltaic cells (OPVs) were fabricated using two DPP-based oligothiophenes as donors. DPP4T showed higher power conversion efficiency (PCE) (1.44%) than DPP2F2T (0.85%). The short-circuit current (JSC) of DPP4T (4.38 mA cm2) was nearly twice that of DPP2F2T (2.49 mA cm2). The improved photovoltaic properties of DPP4T could be explained by the optical properties and the film morphology.  相似文献   

7.
Preparation of magnesium aluminate spinel powder by hydrothermal-assisted sol-gel processing from MgAl2(OCH2CH2OR)8, RCH3 (1), CH2CH2OCH3 (2), MgAl2[OCH(CH3)2]8 (3) and MgAl2(O-sBu)8 (4) in toluene and parent alcohol has been investigated. Coordination status of aluminum atom in precursors was determined by 27Al NMR and correlation between coordination number of aluminum and development of spinel phase in hydrothermal-assisted sol-gel processing has been studied. The gels obtained from hydrothermal-assisted hydrolysis of magnesium-aluminum alkoxides that contain six-coordinated aluminum atoms in solution (1 and 2) after calcination at 700 °C resulted in the formation of pure spinel phase, whereas in similar hydrolysis and calcination processes of precursors that contain four-coordinated aluminum (3 and 4) spinel phase forms along with some Al2O3 and MgO. Selected powders obtained from hydrothermal-assisted sol-gel processing were characterized by thermal analysis (TGA/DSC), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Results indicate that the coordination status of aluminum in the precursor is very crucial for the formation of pure phase spinel. The morphology of prepared spinels was studied by SEM and the results showed that the solvent in hydrothermal-assisted sol-gel processing has a marked effect on the morphology of the resulting MgAl2O4. In hydrothermal-assisted sol-gel processing of aluminum-magnesium alkoxides in hydrophobic solvent, spherical particles are formed, while in the parent alcohol, non-spherical powders are formed.  相似文献   

8.
The (C3H12N2)0.94[Mn1.50Fe1.50III(AsO4)F6] and (C3H12N2)0.75[Co1.50Fe1.50III(AsO4)F6] compounds 1 and 2 have been synthesized using mild hydrothermal conditions. These phases are isostructural with (C3H12N2)0.75[Fe1.5IIFe1.5III(AsO4)F6]. The compounds crystallize in the orthorhombic Imam space group. The unit cell parameters calculated by using the patterns matching routine of the FULPROOF program, starting from the cell parameters of the iron(II),(III) phase, are: a = 7.727(1) Å, b = 11.047(1) Å, c = 13.412(1) Å for 1 and a = 7.560(1) Å, b = 11.012(1) Å, c = 13.206(1) Å for 2, being Z = 8 in both compounds. The crystal structure consists of a three-dimensional framework constructed from edge-sharing [MII(1)2O2F8] (M = Mn, Co) dimeric octahedra linked to [FeIII(2)O2F4] octahedra through the F(1) anions and to the [AsO4] tetrahedra by the O(1) vertex. This network gives rise two kinds of chains, which are extended in perpendicular directions. Chain 1 is extended along the a-axis and chain 2 runs along the c-axis. These chains are linked by the F(1) and O(1) atoms and establish cavities delimited by eight or six polyhedra along the [1 0 0] and [0 0 1] directions, respectively. The propanediammonium cations are located inside these cavities. The thermal study indicates that the structures collapse with the calcination of the organic dication at 255 and 285 °C for 1 and 2, respectively. The Mössbauer spectra in the paramagnetic state indicate the existence of two crystallographically independent positions for the iron(III) cations and a small proportion of this cation in the positions of the divalent Mn(II) and Co(II) ones. The IR spectrum shows the protonated bands of the H2N- groups of the propanediamine molecule and the characteristic bands of the [AsO4]3− arsenate oxoanions. In the diffuse reflectance spectra, it can be observed the bands characteristic of trivalent iron(III) cation and divalent Mn(II) and Co(II) ones in a distorted octahedral symmetry. The calculated Dq and B-Racah parameters for the cobalt(II) phase are 710 and 925 cm−1, respectively. The ESR spectra of compound 1 maintain isotropic with variation in temperature, being g = 1.99. Magnetic measurements for both compounds indicate that the main magnetic interactions are antiferromagnetic in nature. However, at low temperatures small ferromagnetic components are detected, which are probably due to a spin decompensation of the two different metallic cations. The hysteresis loops give values of the remnant magnetization and coercive field of 84.5, 255 emu/mol and 0.01, 0.225 T for phases 1 and 2, respectively.  相似文献   

9.
Electrochemical and optical properties of a hybrid carborane based polymer called poly(di(2-thiophenyl)carborane) (P1) obtained electrochemically were reported as well as its electrochromic device application. Thiophene donor units and m-carborane acceptor unit were combined under the same umbrella via donor–acceptor–donor approach to obtain di(2-thiophenyl)carborane (1). Contrary to the literature, extreme conditions like highly dried solvent or inert atmosphere were not used for polymerization and characterization. Polymer P1 has an ambipolar character since it exhibited a reversible oxidation peak at a half wave potential (E1/2) of 1.08 V and a quasi reversible reduction peak at E1/2 = −1.82 V vs. Ag/AgCl. The polymer film has an optical band gap of 1.95 eV with a maximum absorption band centered at 488 nm. Also, it exhibited multicolor electrochromic behavior between its reduced and oxidized states changing from dark orange to light blue. Furthermore, the electrochromic device prepared based on P1 film was stable and robust.  相似文献   

10.
Sub-Gap Modulated Photo Current Spectroscopy (SGMPCS) is an excellent tool in order to investigate the band gap defect density of the absorber layer, directly on Cu(Inx,Ga1 − x)(Sey,S1 − y)2 (CIGSS) based solar cells. This technique is essentially sensitive to defect states located in the absorber layer, which has the lowest band gap of the heterojunction solar cell. It allows the determination of the σ · N(E) product, where σ is the defect Optical Cross Section (OCS) and N(E) is its Density Of States (DOS).We have developed an analytical model, allowing to derive the above product from the imaginary part of the ac photocurrent of the solar cell, under reverse applied dc bias. We have then applied this model to study the defect density of the co-evaporated CIGS (i.e. y = 1) absorber layer of a heterojunction solar cell. Two different defect distributions have been exhibited by SGMPCS, the properties of which vary with thermal annealing.Correlation with Admittance Spectroscopy allows us to derive an estimation of the defect OCS.  相似文献   

11.
Amorphous hole-transporting carbazole dendrimers, 1,4-bis[3,6-di(carbazol-9-yl)carbazol-9-yl]-2,6-di(2-ethylhexyloxy)benzene (G2CB) and 1,4-bis[3,6-di(carbazol-9-yl)carbazol-9-yl]-9-(2-ethylhexyl)carbazole (G2CC), were synthesized by a divergent approach involving bromination and Ullmann coupling reactions. Compounds G2CB and G2CC showed high thermal stability (Tg = 206 to 245 °C) and excellent electrochemical reversibility. Double-layer organic light-emitting diodes were fabricated by using G2CB and G2CC as hole-transporting layers (HTLs) and tris(8-quinolinato)aluminum (Alq3) as light-emissive layer with the device configuration of indium tin oxide/HTL/Alq3/LiF:Al. Both devices exhibited bright green emission from Alq3. The device using G2CC as HTL has the best performance with a maximum brightness of 8900 cd/m2 at 14 V and a low turn-on voltage of 3.5 V.  相似文献   

12.
In this study, the near band edge anisotropic optical properties of wurtz-stannite (WS) Cu2ZnGeS4 single crystals were characterized using polarization-dependent transmittance and electrolyte electroreflectance (EER) techniques. Single crystals of Cu2ZnGeS4 were grown by chemical vapor transport method using iodine as a transport agent. Analysis of absorption spectra revealed indirect allowed transitions for Cu2ZnGeS4 with the band gaps of 2.02 (2.07) and 2.08 (2.14) eV for Eb and Еa polarization configurations at 300 (10) K. The room-temperature EER spectra in the vicinity of the direct band edge showed anisotropic transitions at around 2.38, 2.44 and 2.45 eV for Eb, Еa and Еc polarizations, respectively. Based on the experimental observations and recent band-structure calculations a plausible band diagram near band edge of WS-Cu2ZnGeS4 was constructed.  相似文献   

13.
SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers with diameters of 1–2 μm have been prepared by the sol–gel process. The SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrites are formed after the precursor calcined at 850 °C for 2 h, fabricating from nanosized particles with a uniform phase distribution. The ferrite grain size increases with the calcination temperature. The magnetic properties for the nanocomposite ferrite microfibers are mainly influenced by the chemical composition and grain size. The nanocomposite ferrite microfibers obtained at 900 °C show the enhanced specific saturation magnetization (Msh) of 64.8 Am2 kg−1, coercivity (Hc) of 146.5 kA m−1 and remanence (Mr) of 33.6 Am2 kg−1 owing to the exchange–coupling interaction. This exchange–coupling interaction in the SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers has been discussed.  相似文献   

14.
Three Y-shape organic dyes, (Z)-3-(5-(3,5-bis(4-(9H-carbazol-9-yl)styryl)-4-methoxyphenyl)thiophen-2-yl)-2-cyanoacrylic acid (OD-1), (Z)-3-(5′-(3,5-bis(4-(9H-carbazol-9-yl)styryl)-4-methoxyphenyl)-2,2′-bithiophen-5-yl)-2-cyanoacrylic acid (OD-2) and (Z)-3-(5′-(3,5-bis(4-(9H-carbazol-9-yl)styryl)-4-methoxyphenyl)-3,4′-4″-trithiophenyl-5-yl)-2-cyanoacrylic acid (OD-3) were synthesized and used as sensitizers in nanocrystalline dye-sensitized solar cells (DSSCs). The introduction of the bis(carbazolylstyryl) units as an electron donor group and oligothiophene units as a both electron donors and π-spacers increased the conjugation length of the sensitizers and thus improved their molar absorption coefficient and light harvesting efficiency. DSSCs with the configuration of SnO2:F/TiO2/organic dye/liquid electrolyte/Pt devices were fabricated using these OD-1, OD-2 and OD-3 as a sensitizers. Among the devices, the DSSC composed of OD-3 exhibited highest power conversion efficiency of 3.03% under AM1.5G (100 mW cm−2).  相似文献   

15.
This paper deals with the analysis of active constrained layer damping (ACLD) of geometrically nonlinear transient vibrations of doubly curved laminated composite shells. Vertically/obliquely reinforced 1–3 piezoelectric composite (PZC) and active fiber composite (AFC) materials are used as the materials of the constraining layer of theACLD treatment. The Golla–Hughes–McTavish (GHM) method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. The first-order shear deformation theory (FSDT) and the Von Kármán type non-linear strain displacement relations are used for analyzing this coupled electro-elastic problem. A three dimensional finite element (FE) model of doubly curved laminated smart composite shells integrated with ACLD patches has been developed to investigate the performance of these patches for controlling the geometrically nonlinear transient vibrations of the shells. The numerical results indicate that the ACLD patches significantly improve the damping characteristics of the doubly curved laminated cross-ply and angle-ply shells for suppressing their geometrically nonlinear transient vibrations. It is found that the performance of the ACLD patch with its constraining layer being made of the AFC is significantly higher than that of the ACLD patch with vertically/obliquely reinforced 1–3 PZC constraining layer. The effects of variation of piezoelectric fiber orientation in both the obliquely reinforced 1–3 PZC and the AFC constraining layers on the control authority of the ACLD patches have also been investigated.  相似文献   

16.
A new 3D-layered inorganic-organic hybrid [d/l-C6H13O2N-H]3[(PO4)W12O36]·4.5H2O (1), as racemic material in the solid phase, has been synthesized and fully characterized by elemental microanalysis, single crystal X-ray diffraction, and infrared, Raman, and proton nuclear magnetic resonance spectroscopes. The most unique structural feature of 1 is its three-dimensional inorganic infinite tunnel-like framework that results in weak van der Waals interactions along the a-axis. A weak interlayer interaction between the titled layers provides a desirable condition to explore its potential as a host in a host-guest complex. The racemization has been observed in the crystal structure with the centric space group (P21/c). The latter consists of α-[(PO4)W12O36]3−and [d/l-C6H13O2N-H]+ moieties with water molecules linked together by a complex network of hydrogen bond interactions.  相似文献   

17.
Two low band gap conjugated polymers P1 (alternating phenylenevinylene containing thiophene and pyrrole rings) and P2 (alternating phenylenevinylene with dithenyl (thienothiadiazole) segments) having optical band gap 1.65 eV and 1.74 eV, respectively, were used as electron donor along with the PC70BM as electron acceptor for the fabrication of bulk heterojunction solar cells. The power conversion efficiency (PCE) of BHJ devices based on P1:PC70BM and P2:PC70BM cast from THF solvent is about 2.84% and 2.34%, respectively, which is higher than the BHJ based on PCBM as electron acceptor. We have investigated the effect of mixed (1-chloronaphthalene (CN)/THF) solvent, modification of PEDOT:PSS layer and inserting of TiO2 layer, on the photovoltaic performance of polymer solar cell. We have achieved power conversion efficiency of 5.07% for the polymer solar cells having structure ITO/PEDOT:PSS (modified)/P1:PC70BM (CN/THF cast)/TiO2/Al. The effect of solvent used for spin coating, modification of PEDOT:PSS layer and inclusion of TiO2 layer has been discussed in detail.  相似文献   

18.
M. Zhang  G.Z. Zhu 《Materials Letters》2008,62(28):4374-4376
This paper reports a preliminary study of Mn5Si3 precipitates in an Mg-Sn-Mn-Si alloy. The transmission electron microscopy investigation reveals that the Mn5Si3 precipitates have a plate shape, approximately 50 nm in thickness and 200 nm in width. The orientation relationship (OR) between the precipitates and matrix is not unique, but all measured ORs obey the following relationship: g(1 0 − 1 0)Mn5Si3 // Δg1 // Δg2, where Δg1 = g(2 − 1 − 1 0)Mn5Si3 − g(0 0 0 2)Mg, Δg2 = g(3 − 1 − 2 0)Mn5Si3 − g(0 0 0 2)Mg. The precipitate morphology and their OR with the matrix are explained with a Δg parallelism rule, showing good agreement.  相似文献   

19.
We describe transformations of the Dion-Jacobson (D-J) phases, KLaNb2O7 and RbBiNb2O7, to the Aurivillius (A) phases, (PbBiO2)LaNb2O7 (1) and (PbBiO2)BiNb2O7 (2), in a metathesis reaction with PbBiO2Cl. Oxide 1 adopts centrosymmetric tetragonal structure (a = 3.905(1) Å, c = 25.66(1) Å), whereas oxide 2 crystallizes in a noncentrosymmetric orthorhombic (A21am) (a = 5.489(1) Å, b = 5.496(2) Å, c = 25.53(1) Å) structure. Oxide 2 shows a distinct SHG response towards 1064 nm laser radiation. The role of La3+ versus Bi3+ in the perovskite slabs for the occurrence of noncentrosymmetric structure/ferroic property in these materials is pointed out.  相似文献   

20.
Efficient red fluorescent compounds Red 1 and Red 2 based on bulky bicyclo[2,2,2]octane groups in the pyran moiety and tert-butyl or isopropyl group in the julolidine moiety of the 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) skeleton were synthesized and characterized. As red-emitting dopants in an Alq3 single-host emitting system, Red 1 and Red 2 exhibited improved color purity and enhanced luminous efficiency compared to DCJTB. Moreover, a device using Red 1 as a dopant in a rubrene-Alq3 co-host emitting system exhibited improved electroluminescence performance with a luminous efficiency and power efficiency of 6.89 cd/A and 3.09 lm/W at 20 mA/cm2, respectively, and CIE x,y coordinates of (x = 0.64,y = 0.36) at 7.0 V, approaching saturated red emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号