首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Development of bone scaffolds with excellent osteogenic potential is highly important for stem cell-based bone engineering. Here we developed novel scaffolds made of poly(lactic acid) (PLA) biopolymer with bioactive glass nanocomponent. In vitro bone bioactivity and osteogenic potential of the nanocomposite scaffolds were determined using bone marrow mesenchymal stem cells. Glass nanocomponent was evenly embedded within the PLA matrix while preserving the scaffold pore structure. Simulated body fluid (SBF) test revealed rapid induction of bone mineral-like apatite over the surface of the nanocomposite scaffold, which was not readily observed in the PLA. Cells adhered well onto the nanocomposite scaffold and multiplied during culture period. Nanocomposite scaffold significantly stimulated alkaline phosphatase (ALP) activity and the expression of bone-associated genes (collagen I, ALP, osteopontin and osteocalcin) with respect to PLA. Western blot analysis confirmed the osteogenic protein level was also higher on the nanocomposite scaffold. Results suggest that the nanocomposite scaffolds provide favorable conditions for osteogenesis of MSCs and thus find potential uses in bone tissue engineering.  相似文献   

2.
Nano-sized hydroxyapatite (nanoHA) reinforced composites, mimicking natural bone, were produced. Examination by transmission electron microscopy revealed that the nanoHA particles had a rod-like morphology, 20–30 nm in width and 50–80 nm in length. The phase composition of hydroxyapatite was confirmed by X-ray diffraction. The nanoHA particles were incorporated into poly-2-hydroxyethylmethacrylate (PHEMA)/polycaprolactone (PCL) matrix to make new nanocomposites: nanoHA-PHEMA/PCL. Porous nanocomposite scaffolds were then produced using a porogen leaching method. The interconnectivity of the porous structure of the scaffolds was revealed by non-destructive X-ray microtomography. Porosity of 84% was achieved and pore sizes were approximately around 300–400 μm. An in vitro study found that the nanocomposites were bioactive as indicated by the formation of a bone-like apatite layer after immersion in simulated body fluid. Furthermore, the nanocomposites were able to support the growth and proliferation of primary human osteoblast (HOB) cells. HOB cells developed a well organized actin cytoskeletal protein on the nanocomposite surface. The results demonstrate the potential of the nanocomposite scaffolds for tissue engineering applications for bone repair.  相似文献   

3.
Bioactive glasses are known to have the ability to regenerate bone, and to release ionic biological stimuli that promote bone cell proliferation by gene activation, but their use has been restricted mainly to the form of powder, granules or small monoliths. Resorbable 3D macroporous bioactive scaffolds have been produced for tissue engineering applications by foaming sol-gel-derived bioactive glasses. The foams exhibit a hierarchical structure, with interconnected macropores (10–500 m), which provide the potential for tissue ingrowth and mesopores (2–50 nm), which enhance bioactivity and release of ionic products. The macroporous matrices were produced by the foaming of sol-gel glasses with the use of a surfactant. Three glass systems SiO2, SiO2-CaO and SiO2-CaO-P2O5were foamed using various concentrations of surfactant, in order to investigate the effect of surfactant concentration and composition on the structure and properties of the hierarchical construct.  相似文献   

4.
Hierarchically mesoporous–macroporous–giant-porous bioactive glass/poly ε-caprolactone (PCL) composite scaffolds were prepared using a combination of the sol–gel method, evaporation-induced self-assembly process in the presence of nonionic triblock copolymer, EO100PO65EO100 (F127), as template, salt leaching method, and rapid prototyping techniques. F127 acts as a template, inducing the formation of mesopores, NaCl with sizes between 25 and 33 μm provides macro-pores after leaching, and rapid prototyping produces giant-pores. The structure and morphology of the scaffolds were characterized by the field emission scanning electron microscopy, transmission electron microscopy, and Hg porosimetry. The mechanical properties of the scaffolds were examined by the dynamic mechanical analysis. Their in vitro bioactivities were confirmed by immersing the scaffolds in simulated body fluid. Their biocompatibilities were also evaluated by culturing human bone marrow stromal cells on the scaffolds. The scaffolds show good molding capabilities, mechanical properties, 3 dimensionally well-interconnected pore structures, bioactivities, and biocompatibilities in vitro. Depending on the amount of NaCl, the scaffolds also show unique sponge-like properties, but still retain better mechanical properties than general salt leaching derived PCL scaffolds. All of the data provide good evidence that the obtained scaffolds possess excellent potential for applications in the fields of tissue engineering and drug storage.  相似文献   

5.
Bioactive glass–ceramic scaffolds with interconnected pore networks suitable for bone regeneration were produced through rapid prototyping techniques by a photosensitive resin mold. The 45S5 Bioglass® was used in this study with a composition (wt%): 45% SiO2, 24.5% CaO, 24.5% Na2O and 6% P2O5. All variables in the process were investigated systematically to devise an optimal process. Characterization methods such as XRD, FTIR and FESEM were used for determination of the in vitro bioactivity of the scaffolds after immersion in SBF. The results show that hydroxycarbonate apatite crystals formed and to be a layer in 14 days. The compressive strength of the scaffolds was approximately 12.37 ± 1.25 MPa for the well-defined interconnected pores with a mean diameter of 900 μm, which is thought to be a suitable porous network for vascularized bone regeneration. This scaffold has the potential to bond to bone for application in bone repair and regeneration.  相似文献   

6.
Poly(lactide-co-glycolide) (PLGA) copolymers are the most prevalent materials for tissue engineering applications. To mimic the real microenvironment of extracellular matrix (ECM) for cell growth, nanofibrous PLGA scaffolds are preferred. PLGA5050 (in which the molar ratio of lactidyl to glycolidyl units is 50:50), which is an utterly amorphous polymer, was first reported to be made into nanofibrous networks (fiber diameter around 500 nm) using phase separation from PLGA5050/THF solutions in this study. The concentration of polymeric solution had significant effects on fiber diameter and unit length. Nonsolvent (e.g. H2O) was unnecessary to form the PLGA5050 gel, which was critical to nanofibrosis, as if the environmental temperature for gelation occurrence was low enough (? 70 °C). The physical crosslinks to stabilize the PLGA5050/THF gel were believed to be GA segments along the backbone owing to their inferior solubility in THF. The addition of H2O would cause adverse effects of liquid–liquid phase separation and nanofibrosis failure owing to the hydrophilicity of glycolidyl units. Associating with the phase separation method, particle-leaching technique was applied to fabricate three-dimensional scaffolds with macroporous and nanofibrous structures. To ensure the occurrence of nanofibrosis on macropore walls, the temperature of salt particles should be best lowed to ? 70 °C beforehand. Accordingly, scaffolds prepared under varied parameters exhibited different nanofiber and pore morphologies, which affected the pore size, porosity, specific surface area, water contact angle and protein adsorption ability etc. The preliminary cell (MC3T3-E1) culture confirmed the cell ingrowth into the macroporous and nanofibrous PLGA5050 scaffolds in comparison with the solely nanofibrous matrixes. This kind of bi-scaled three dimensional matrixes can be superior candidate scaffolds for tissue engineering applications.  相似文献   

7.
Porous nanocomposite scaffolds of poly(l-lactic acid) (PLA), loaded with TiO2 nanoparticles, were prepared by thermally induced phase-separation (TIPS). The preparation procedure induced crystalline polymer structures (with degree of crystallinity up to 51%) with no evidence of residual solvent, as confirmed by thermal analysis. Scaffold porosity, distribution of the nanofiller and shape of the pores were investigated by X-ray micro computed tomography (μ-CT) and scanning electron microscopy (SEM). The produced scaffolds with porosity of 86 ± 2% have interconnected open tubular pores with diameter and length in the ranges 40–80 μm and 200–400 μm respectively. The inorganic TiO2 nano-additive is well dispersed in the scaffold walls, with only a small fraction of micrometric aggregates observable. All investigated polymer scaffolds display similar compressive moduli (between 2.1 and 2.8 MPa). Thermogravimetry (TGA), wide angle X-ray diffraction (XRD) and SEM analyses run on scaffolds subjected to in vitro mineralization tests showed that PLA scaffolds loaded with TiO2 develop an amount of hydroxyapatite four times higher than that of plain PLA, thus assessing that titania nanoparticles confer improved bioactivity to the scaffolds.  相似文献   

8.
Developing materials combining the advantages of synthetic polymers and bioactive glass nanoparticles can provide an efficient bone engineering scaffold. In this study, sol–gel bioactive glass (SG) nanoparticles were synthesized by quick alkali-mediation; sol–gel derived bioactive glass/poly(l-lactide) nanocomposite scaffolds were then developed. The influence of the glass content on the porosity of nanocomposite scaffolds was evaluated by SEM. The results showed that the neat polymer scaffold (PLA) has a highly interconnected porous structure with a maximum pore size of about 250 μm. For the composite scaffold containing 25 wt.% glass (SGP25), the decrease in the maximum pore size, (to about 200 μm) was not significant while for the SGP50 composite scaffold containing 50 wt.% glass it was a significant decrease (to about 100 μm). The apparent porosity of the scaffolds was 56.56% ± 7.15, 54.14% ± 3.84, and 53.11% ± 3.99 for PLA, SGP25, and, SGP50 respectively. FT-IR, TGA, and XRD results revealed some interaction of the glass filler with the polymeric matrix in the scaffolds. The degradation study showed that, by increasing the glass content in the scaffolds, the water absorption decreased, the weight loss increased, and the cumulative ion concentrations released from them also increased. This indicates the possibility of modulating the degradation rate by varying the glass/polymer ratio. At the end of the incubation period, the weight losses were around 5.44% ± 0.96, 32.50% ± 2.73, and 41.47% ± 3.02 for the PLA, SGP25, and SGP50, respectively. Moreover, the water uptake reached 119.65% ± 18.88 and 93.39% ± 13.01 for SGP25 and SGP50, respectively. The addition of the SG to the scaffolds was found to enhance their in vitro bioactivity. Therefore, these nanocomposite scaffolds have a potential to be applied in bone engineering. All data are expressed as mean ± standard deviation (n = 3).  相似文献   

9.
The development of the new technologies of bone tissue engineering requires the production of bioactive and biodegradable macroporous scaffolds. Hydroxyapatite (HA) ceramics are useful bone substitutes, but they degrade minimally. Tricalcium phosphates also show poor ability of Ca-P formation both in-vitro and in-vivo, although they are degradable. The present study introduces a biodegradable, bioactive, and macroporous scaffold with suitable mechanical properties. The prepared hydroxyapatite scaffold was coated with a nanocrystalline bioactive glass layer to be subsequently sintered at different temperatures. The bioactivity and degradability of the coated scaffolds were investigated by standard procedures. The ability to induce Ca-P formation in SBF (simulated body fluid) was also investigated semi-quantitatively. BS1 scaffolds (scaffolds sintered at 800 °C with a holding time of 2 h) showed remarkable bioactivity and degradability simultaneously. Formation of a nanocrystalline phase (Si2PO7) during the sintering considerably decreased the capability of BS1 scaffolds for Ca-P formation and the rate of degradation but enhanced their mechanical properties. The BS1 scaffolds showed not only significant bioactivity but also good degradability and suitable mechanical property.  相似文献   

10.
The objective of this work was to evaluate borate bioactive glass scaffolds (with a composition in the system Na2O–K2O–MgO–CaO–B2O3–P2O5) as devices for the release of the drug Vancomycin in the treatment of bone infection. A solution of ammonium phosphate, with or without dissolved Vancomycin, was used to bond borate glass particles into the shape of pellets. The in vitro degradation of the pellets and their conversion to a hydroxyapatite-type material in a simulated body fluid (SBF) were investigated using weight loss measurements, chemical analysis, X-ray diffraction, and scanning electron microscopy. The results showed that greater than 90% of the glass in the scaffolds degraded within 1 week, to form poorly crystallized hydroxyapatite (HA). Pellets loaded with Vancomycin provided controlled release of the drug over 4 days. Vancomycin-loaded scaffolds were implanted into the right tibiae of rabbits infected with osteomyelitis. The efficacy of the treatment was assessed using microbiological examination and histology. The HA formed in the scaffolds in vivo, resulting from the conversion of the glass, served as structure to support the growth of new bone and blood vessels. The results in this work indicate that bioactive borate glass could provide a promising biodegradable and bioactive material for use as both a drug delivery system and a scaffold for bone repair.  相似文献   

11.
Integrating a biomimetic extracellular matrix to improve the microenvironment of 3D printing scaffolds is an emerging strategy for bone substitute design. Here, a “soft–hard” bone implant (BM-g-DPCL) consisting of a bioactive matrix chemically integrated on a polydopamine (PDA)-coated porous gradient scaffold by polyphenol groups is constructed. The PDA-coated “hard” scaffolds promoted Ca2+ chelation and mineral deposition; the “soft” bioactive matrix is beneficial to the migration, proliferation, and osteogenic differentiation of stem cells in vitro, accelerated endogenous stem cell recruitment, and initiated rapid angiogenesis in vivo. The results of the rabbit cranial defect model (Φ = 10 mm) confirmed that BM-g-DPCL promoted the integration between bone tissue and implant and induced the deposition of bone matrix. Proteomics confirmed that cytokine adhesion, biomineralization, rapid vascularization, and extracellular matrix formation are major factors that accelerate bone defect healing. This strategy of highly chemically bonded soft–hard components guided the construction of the bioactive regenerative scaffold.  相似文献   

12.
Investigation of novel biomaterials for bone engineering is based on the development of porous scaffolds, which should match the properties of the tissue that is to be replaced. These materials need to be biocompatible, ideally osteoinductive, osteoconductive, and mechanically well-matched. In the present paper, we report the preparation and characterization of hybrid macroporous scaffold of polyvinyl alcohol (PVA)/bioactive glass through the sol–gel route. Hybrids containing PVA (80, 70 and 60 wt%) and bioactive glass with composition 58SiO2–33CaO–9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass via sol–gel precursor solution. PVA with two different degree of hydrolysis (DH), 98.5% (high degree) and 80% (low degree) were also investigated, in order to evaluate the influence of residual acetate group present in polymer chain on the final structure and properties of 3D porous composite produced. The microstructure, morphology and crystallinity of the hybrid porous scaffolds were characterized by X-ray diffraction (XRD), Infrared Fourier Transform spectrometry (FTIR) and Scanning electron microscopy (SEM/EDX) analysis. In addition, specific surface area was assessed by B.E.T. nitrogen adsorption method and mechanical behavior was evaluated by compression tests. Preliminary cytotoxicity and cell viability were also performed by the MTT assay. VERO cell monolayers were grown in 96-well microtiter plates. The results have clearly showed that hybrid foams of polyvinyl alcohol/bioactive glass (PVA/BG) with interconnected macroporous 3D structure were successfully produced. All the tested hybrids of PVA/BG have showed adequate cell viability properties for potential biological applications.  相似文献   

13.
Highly porous gelatin–silica hybrid scaffolds with high porosity, large pores and large interconnections, as well as tailored surface textures were produced using a newly developed direct foaming/freezing. Two different types of precursors as the silica source, 3-glycidoxyproyltrimethoxysilane (denoted as “GS”) and sol–gel derived silica (denoted as “SS”), were used for producing the porous GLA–GS and GLA–GS–SS hybrid scaffolds. In this method, air bubbles could be vigorously incorporated into the GLA–GS and GLA–GS–SS mixtures and then stabilized by rapid freezing of the foamed mixtures at −70 °C. Both the porous GLA–GS and GLA–GS–SS hybrid scaffolds produced herein had a highly porous structure (porosity > 90 vol%, pore size = 200–500 μm, interconnection size = 100–200 μm) with a uniform distribution of the silica phase in the gelatin matrix. In addition, surface textures with a rugged morphology could be created after immersion of the porous GLA–GS and GLA–GS–SS hybrid scaffolds in ethanol at −20 °C for 24 h. The porous GLA–GS and GLA–GS–SS hybrid scaffolds showed much higher mechanical properties than the porous GLA scaffold, while preserving excellent in vitro biocompatibility, demonstrating potential application as the bone scaffold.  相似文献   

14.
Novel highly porous nanocomposite scaffolds consisting of polycaprolactone (PCL) and forsterite nanopowder were prepared by a solvent-casting/particle-leaching method. In addition, the effects of forsterite nanopowder contents on the structure of the scaffolds were investigated to provide an appropriate composite for bone regenerative medicine. Results showed that the scaffolds exhibited high porosity (up to 92%) with open pores of 100-300 μm average diameters. This porosity increased with decreasing forsterite nanopowder content. In addition, the pore walls contained numerous micropores. Microstructure studies showed that the pores were well distributed throughout the structures. Furthermore, the bioactive forsterite nanoparticles were homogenously distributed within the PCL matrix of the scaffolds, which contained up to 30 wt.% forsterite nanopowder. This porous structure with micropores provides the properties required for bone tissue engineering applications.  相似文献   

15.
Submicron bioactive glass fibers 70S30C (70 mol% SiO2, 30 mol% CaO) acting as bone tissue scaffolds were fabricated by electrospinning method. The scaffold is a hierarchical pore network that consists of interconnected fibers with macropores and mesopores. The structure, morphological characterization and mechanical properties of the submicron bioactive glass fibers were studied by XRD, EDS, FIIR, SEM, N2 gas absorption analyses and nanoindentation. The effect of the voltage on the morphology of electrospun bioactive glass fibers was investigated. It was found that decreasing the applied voltage from 19 to 7 kV can facilitate the formation of finer fibers with fewer bead defects. The hardness and Young’s modulus of submicron bioactive glass fibers were measured as 0.21 and 5.5 GPa, respectively. Comparing with other bone tissue scaffolds measured by nanoindentation, the elastic modulus of the present scaffold was relatively high and close to the bone.  相似文献   

16.
Cytocompatibility is one of the most important aspects in evaluating biomaterials for tissue engineering applications. In this study, biodegradable polymer scaffolds based on nanocomposites of poly(l-lactic acid) and TiO2 nanoparticles functionalized with oleic acid (5 and 10 wt%) were prepared by thermally induced phase separation method. The aim of this research was to evaluate the properties of nanocomposite scaffolds and to investigate the influence of functionalized nanofiller on their bioactivity, biodegradability and cytocompatibility. The nanocomposite scaffolds showed bioactivity in supersaturated fluids and reduced biodegradation in simulated body fluid when compared to pure PLA scaffold. Cell viability and proliferation potential in contact with nanocomposite scaffolds were tested via MTT assay, while the scaffolds cytotoxic potential was evaluated using lactate dehydrogenase method. It was found that incorporation of functionalized TiO2 nanofiller with content of 5 wt% in the corresponding PLA matrix has a significant positive effect on the cell viability and proliferation, while at higher nanofiller content (10 wt%), insignificant cell proliferation and increased cytotoxicity were confirmed. Furthermore, PLA/TiO2–OA nanocomposite scaffolds were proved as promising materials for drug delivery.  相似文献   

17.
Electrospinning technique can be used to produce the three-dimensional nanofibrous scaffold similar to natural extracellular matrix, which satisfies particular requirements of tissue engineering scaffold. Randomly-oriented and aligned poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin biocomposite scaffolds were successfully produced by electrospinning in the present study. The resulting nanofibrous scaffolds exhibited smooth surface and high porous structure. Blending PLGA with gelatin enhanced the hydrophilicity but decreased the average fiber diameter and the mechanical properties of the scaffolds under the same electrospinning condition. The cell culture results showed that the elongation of the osteoblast on the aligned nanofibrous scaffold was parallel to the fiber arrangement and the cell number was similar to that of randomly-oriented scaffold, indicating that the aligned nanofibrous scaffold provide a beneficial approach for the bone regeneration.  相似文献   

18.
The development of bioactive scaffolds with a designed pore configuration is of particular importance in bone tissue engineering. In this study, bone scaffolds with a controlled pore structure and a bioactive composition were produced using a robotic dispensing technique. A poly(ε-caprolactone) (PCL) and hydroxyapatite (HA) composite solution (PCL/HA = 1) was constructed into a 3-dimensional (3D) porous scaffold by fiber deposition and layer-by-layer assembly using a computer-aided robocasting machine. The in vitro tissue cell compatibility was examined using rat bone marrow stromal cells (rBMSCs). The adhesion and growth of cells onto the robotic dispensed scaffolds were observed to be limited by applying the conventional cell seeding technique. However, the initially adhered cells were viable on the scaffold surface. The alkaline phosphatase activity of the cells was significantly higher on the HA–PCL than on the PCL and control culture dish, suggesting that the robotic dispensed HA–PCL scaffold should stimulate the osteogenic differentiation of rBMSCs. Moreover, the expression of a series of bone-associated genes, including alkaline phosphatase and collagen type I, was highly up-regulated on the HA–PCL scaffold as compared to that on the pure PCL scaffold. Overall, the robotic dispensed HA–PCL is considered to find potential use as a bioactive 3D scaffold for bone tissue engineering. Seok-Jung Hong and Ishik Jeong contributed equally.  相似文献   

19.
Here we prepared three-dimensional (3D) porous-structured biodegradable polymer scaffolds for tissue regeneration using room temperature ionic liquids (RTILs) as a novel porogen, and addressed their biological properties, including in vitro cell growth and differentiation and in vivo tissue compatibility. RTIL based on 1-butyl-3-methylimidazolium ([bmim]) bearing hydrophilic anion Cl was introduced within the polymer structure to provide a pore network. A mixture of poly(lactic acid) (PLA) with RTIL dissolved in an organic solvent formed a bi-continuous network during the drying process. Selective dissolution of the RTIL phase was facilitated in ethanol, which resulted in a porous network of the polymer phase with complete removal of the RTIL. The RTILs-assisted porous scaffolds showed a typical open-channeled network with pore sizes over 100 μm and porosities of about 86–94%. For the biocompatibility assessments of the scaffolds, mesenchymal stem cells (MSCs) derived from rat bone marrow were seeded onto the PLA scaffold, and the cell proliferation and osteoblastic differentiation behaviors were examined. Results showed a typical on-going increase in the cell population with a level comparable to that observed on the tissue culture plastic control, indicating good cell compatibility. When cultured in an osteogenic medium, the alkaline phosphatase (ALP) activity of the cells on the PLA scaffolds was stimulated to increase with time from 7 to 14 days, in a similar manner to that on the control. Moreover, the expression of genes related to osteoblasts, including collagen type I, osteocalcin and bone sialoprotein, was stimulated on the 3D PLA scaffold during culture for up to 14 days, with levels higher than those on the control, suggesting the developed scaffold provided a 3D matrix condition for osteogenesis. An in vivo pilot study conducted subcutaneously in rat for 4 weeks revealed good tissue compatibility of the scaffold, with the ingrowth of cells and formation of collageneous tissue around and deep within the pores of the scaffold and no significant inflammatory reaction. Taken together, this novel method of using RTILs as a pore generator is considered to be useful in the development of biocompatible porous polymer scaffolds for tissue regeneration.  相似文献   

20.
Regeneration of fractured or diseased bones is the challenge faced by current technologies in tissue engineering. The major solid components of human bone consist of collagen and hydroxyapatite. Collagen (Col) and hydroxyapatite (HA) have potential in mimicking natural extracellular matrix and replacing diseased skeletal bones. More attention has been focused on HA because of its crystallographic structure similar to inorganic compound found in natural bone and extensively investigated due to its excellent biocompatibility, bioactivity and osteoconductivity properties. In the present study, electrospun nanofibrous scaffolds are fabricated with collagen (80 mg/ml) and Col/HA (1:1). The diameter of the collagen nanofibers is around 265 ± 0.64 nm and Col/HA nanofibers are 293 ± 1.45 nm. The crystalline HA (29 ± 7.5 nm) loaded into the collagen nanofibers are embedded within nanofibrous matrix of the scaffolds. Osteoblasts cultured on both scaffolds and show insignificant level of proliferation but mineralization was significantly (p < 0.001) increased to 56% in Col/HA nanofibrous scaffolds compared to collagen. Energy dispersive X-ray analysis (EDX) spectroscopy results proved the presence of higher level of calcium and phosphorous in Col/HA nanocomposites than collagen nanofibrous scaffolds grown osteoblasts. The results of the present study suggested that the designed electrospun nanofibrous scaffold (Col/HA) have potential biomaterial for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号