首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Small, hollow, multilayer actuators with a diameter of 3 mm were fabricated by the stacking method from piezoelectric hard lead zirconate titanate (PZT) ceramics. Langevin vibrators were also constructed with the hollow multilayer actuators. The performance capabilities of the actuator and Langevin vibrator samples were examined under high-power conditions. The high-power vibration level at a given sinusoidal drive voltage was significantly enhanced by using a multilayer structure under either a nonresonance or resonance condition. A maximum vibration velocity of 0.17 m/sec was obtained for the 9-layer actuator sample under nonresonance conditions. The vibration velocity was further improved with the Langevin vibrator driven at the resonance frequency. The temperature rise due to heat generation under high-power conditions was the immediate limitation on the maximum accessible vibration velocity for the stacked actuators.  相似文献   

2.
利用矩形板形压电振子的两种振动模态,构建了一种采用单片压电振子驱动球形转子,形成两个旋转自由度的压电球面超声马达,对马达的作用机理进行了仿真分析和试验验证.利用有限元法对马达的矩形板压电振子的振动模态、共振频率进行了分析计算,仿真结果表明矩形板压电振子能够形成振型清晰的B32和B23振动模态,模态频率分别为49.127 kHz和49.756 kHz.对压电振子上每个凸起与球形转子之间的接触点的运动轨迹进行了计算机仿真,并对仿真结果进行了试验验证.分析结果表明各接触点能有效形成时序合理的椭圆运动轨迹,作为支撑足的一组凸起的变形量占作为驱动足的一组凸起的变形量的30%,能够用于驱动球形转子形成二自由度转动.仿真分析和试验结果证明了二自由度球面马达球形转子形成二维运动的作用机理.  相似文献   

3.
压电驱动器是一种由压电功能材料构成的微型机电器件,为研究改善压电驱动器环形压电振子的振动特性和俘能特性,建立了压电振子的机电耦合有限元模型,分析了压电振子齿槽倾斜度和支撑对其振动特性和俘能特性的影响,并从改善振子振动特性和俘能特性角度出发,对压电振子进行了结构优化设计;其次,利用该有限元模型求解了压电振子的导纳特性曲线...  相似文献   

4.
为了丰富平面超声电机的型式,提出一种双十字压电振子同型弯振模态驱动的平面超声电机。利用双十字压电振子的纵杆面内、面外弯振耦合以及横杆面内、面外弯振耦合,分别在两杆的驱动足上合成沿xoz、yoz面行进的两相椭圆轨迹,以交替地推动动子沿x、y向移动。分析了该平面超声电机的驱动机理,并推导出两相椭圆轨迹方程。建立了双十字压电振子机电耦合模型,对其三相工作模态的振型进行仿真分析,并在结构优化的基础上实现了三相工作模态频率一致,使它们分别为43 468,43 552和43 569 Hz。仿真了双十字压电振子的频响特性并实现了干扰模态分离,当驱动电压为250 V时,驱动足x、y、z向振幅分别为1.3,0.8和0.9 μm,满足电机驱动要求。模拟得到定频激励下双十字压电振子驱动足的两相椭圆运动轨迹,验证了所设计平面超声电机驱动机理的有效性。该平面超声电机可输出较大速度与动力,具有广阔的应用前景。  相似文献   

5.
A novel multilayer in-plane bending piezoelectric actuator, called a multilayer split-morph, was designed and fabricated by thick-film screen-printing technology for a dual-stage head-positioning actuator system in a hard disk drive. The design, operation and theoretical principles have been described. The electromechanical performance of the fabricated actuators has been evaluated. The actuation stroke of the actuator is in inverse proportion to the thickness of the piezoelectric layer. The highest displacement/voltage sensitivity of 0.154µmV-1 is achieved in a trapezoidal multilayer split-morph with a thickness of 35 m in each piezoelectric layer. The corresponding fundamental resonance frequency of the sway mode is high at 47 kHz in the trapezoid actuator with dimensions of 10.14 mm length, 3.08 mm and 1.54 mm widths of the two parallel sides of the trapezoid. The multilayer split-morph was designed to integrate directly onto a modified suspension load beam. With the combined attractive performances indicated above, the batch fabricated multilayer split-morph can provide a low-cost but promising solution for achieving very high track densities in a hard disk drive by implementing a high performance dual-stage head-positioning actuator system.  相似文献   

6.
A single-element tuning fork piezoelectric linear actuator   总被引:1,自引:0,他引:1  
This paper describes the design of a piezoelectric tuning-fork, dual-mode motor. The motor uses a single multilayer piezoelectric element in combination with tuning fork and shearing motion to form an actuator using a single drive signal. Finite-element analysis was used in the design of the motor, and the process is described along with the selection of the device's materials and its performance. Swaging was used to mount the multilayer piezoelectric element within the stator. Prototypes of the 25-mm long bidirectional actuator achieved a maximum linear no-load speed of 16.5 cm/s, a maximum linear force of 1.86 N, and maximum efficiency of 18.9%.  相似文献   

7.
A new type of piezoelectric plate actuator for ultrasonic linear motors has been developed. These new piezoelectric actuators use the principle of asymmetric resonant excitation of the piezoceramic plate in a special resonant mode consisting of a standing two-dimensional extensional wave in a piezoceramic plate. The behavior of the actuator has been simulated with finite-element method (FEM) software and the simulation results checked with single-point contact measurements on the surface of the actuator. This paper describes this work and closes by describing the new ultrasonic translation stages based on this design.  相似文献   

8.
A pi-shaped ultrasonic actuator is proposed for the noncontact trapping, extraction, and transportation of small particles. In this actuator, two metal plates clamp a multilayer piezoelectric vibrator by a small bolt, and the metal plates are tapered in their lower parts so that a vibration gradient can be obtained. The flexural vibration of the metal plates is used to generate a sound field in the gap between the two tapered metal plates. At a driving frequency of about 152.8 kHz, shrimp eggs, grass seeds, thyme seeds, rice powder, fine salt, and fine sugar, which have an average diameter from several tens of micrometers to several hundreds of micrometers, can be trapped stably without contact with the actuator, and the particles insoluble in water can be extracted from water and transported in water by the actuator. In the noncontact trapping of small particles, the positions of trapped particles as well as the relationship among the number of trapped particles, vibration velocity, and input power are investigated. The number of trapped particles increases as the vibration velocity or input power increases. However, when the vibration velocity or input power is too large, the particles may be ejected out of the actuator and, therefore, cannot be stably trapped. The minimum vibration velocity to trap small particles increases as particle density increases for the particles that have the shape near to a sphere and a proper density. In the extraction of small particles from water, the relationship between the number of extracted thyme seeds and the input power is investigated. Increasing the input power can increase the extracted thyme seeds. However, there is a maximum particle number that can be extracted from water. In the transportation of thyme seeds in water, the dependence of the particle loss during the transportation on the speed and distance of transportation and the input power is experimentally estimated. As the distance and speed of transportation increase, the particle loss during the transportation increases. Increasing the input power increases the trapping effect and, therefore, decreases the particle loss.  相似文献   

9.
Ternary Pb(In(1/2)Nb(1/2))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) single crystals with higher coercive field (E(C) ~9 kV/cm) and higher ferroelectric-transition temperature (T(R-T) = 108°C) were grown, and correspondingly, a double-mode piezoelectric ultrasonic micro-actuator made of PIN-PMN-PT crystal brick (5 x 1.5 x 1.32 mm) and operated in the first longitudinal and the second bending modes was developed. The ferroelectric, dielectric, electromechanical, and resonance displacement properties of the micro-actuator were characterized for miniature linear piezo-motor applications. The longitudinal displacement of the actuator is ~0.11 μm (with an applied voltage of 5 V), which is comparable to that of a multilayer piezoelectric-ceramic actuator of the same size. This crystal micro-actuator was successfully used to drive a slider moving linearly.  相似文献   

10.
Finite element simulation for a new disc-type ultrasonic stator   总被引:1,自引:0,他引:1  
This paper is concerned with the development of a new disc-type piezoelectric ultrasonic stator. Linear piezoelectric, mechanical, and piezoelectro-mechanic behaviors of a metal disc structure embedded with piezoelectric actuator are considered. Using a finite element method, a dynamic formulary is modeled for the new disc-type piezoelectric ultrasonic stator. In this model, a 3-dimensional (D) mechanical element with an extra electrical degree of freedom is used to simulate dynamic vibration modes and analyze characteristic responses such as electrical impedance response, phase response, and mechanical frequency response for a new disc-type piezoelectric ultrasonic stator. An adaptive boundary condition, simple support condition with three nonequal-triangular fixed points near the edge for the mechanism design of a new disc-type piezoelectric ultrasonic stator is defined so that a lateral elliptical motion of the contact point between stator and rotor can be realized for driving the rotor. The finite element results have been compared with the experimental measurements. As a result, the analysis model seems to be similar to the real condition.  相似文献   

11.
This paper presents analytical solutions to the transverse deformation shape of a circular axisymmetric piezoelectric-metal composite unimorph actuator. The solutions account for both the influence of an applied electric field and a concentrated or uniformly distributed mechanical load. Using piezoelectric constitutive equations, combined with thin plate and small bending elastic theory, the generalized equation of motion for bending of thin piezoelectric-metal composite plates has been derived. Our approach predicts that there is an optimum thickness ratio between the piezoelectric and metal plates, which leads to a maximum combination of deflection and load carrying capabilities. Derived formulas are very simple that offer a quick method for engineering design and optimization of a circular unimorph piezoelectric actuator.  相似文献   

12.
In this paper, a model is developed for the stability analysis of an acoustically levitated disk on the basis of analyzing eddy acoustic streaming and acoustic viscous stress. In the model, the effect of the acoustic streaming outside the boundary layer that is on the surface of the levitated disk is properly taken into account. Also, the calculation of sound field and acoustic viscous stress is limited to the range that has a dominant effect on the stability. By this method, we obtain a quite accurate solution of the stability coefficient. For the small horizontal shift of a large levitated disk, the model is verified by the good agreement between the experimental and theoretical results. By means of this model and relevant experiments, some factors that affect the stability of the levitated disk are investigated, and useful guidelines for design and application are obtained. It is found that the range from the edge to the outermost nodal circle of the disk-shaped vibrator has a large effect on the stability of the levitated disk. To stabilize the levitated disk by acoustic viscous force, the distance between the edge and the outermost nodal circle of the vibrator must be larger than a critical value, which is determined by the driving frequency and the sound velocity of the fluid between the levitated disk and the vibrator. When this condition is satisfied, increasing the distance between the edge and the outermost nodal circle leads to a decrease in the stability. It is also found that the property of the fluid between the levitated disk and the vibrator has a large effect on the stability. It is easier to stabilize the levitated disk in steam than in air, but more difficult to do so in carbon dioxide and hydrogen. In addition, theoretical results show that increasing the weight per unit area of the levitated object increases the stability for a given vibrator velocity. The distribution of the acoustic viscous stress and the dependence of the stability coefficient and the holding force on the horizontal shift of the levitated disk, which are obtained by this study, also are useful to a better understanding of the stability of the levitated disk.  相似文献   

13.
王锋  唐国金  李道奎 《工程力学》2006,23(4):166-171,176
研究了压电结构中压电片厚度和嵌入深度的优化问题。首先给出了压电层合板的高阶耦合分析模型;然后以不受约束的含压电铺层复合材料板为代表,在压电层厚度方向施加电场时板自由变形,假设板任意微元横截面上内力为零,以其弯(扭)曲曲率最大为优化目标,建立了求解压电片最优厚度和嵌入深度问题的约束优化模型。最后分别以各向同性板中嵌入各项同性压电片和复合材料板中嵌入各向异性压电片为例进行了分析,绘出了目标函数的三维曲面图及等高线图,结果表明压电片的作动效能与其厚度和嵌入位置密切相关,而最优厚度和嵌入位置是由压电片和基体的材料特性决定的。  相似文献   

14.
In this paper, to exploit the contribution from not only the stators but also from other parts of miniature ultrasonic motors, an amplitude modulation drive is proposed to drive a miniature linear ultrasonic motor consisting of two rectangular piezoelectric ceramic plates. Using finite-element software, the first longitudinal and second lateral-bending frequencies of the vibrator are shown to be very close when its dimensions are 8 mm x 2.16 mm x 1 mm. So one single frequency power should be able to drive the motor. However, in practice the motor is found to be hard to move with a single frequency power because of its small vibration amplitudes and big frequency difference between its longitudinal and bending resonance, which is induced by the boundary condition variation. To drive the motor effectively, an amplitude modulation drive is used by superimposing two signals with nearly the same frequencies, around the resonant frequency of the vibrators of the linear motor. When the amplitude modulation frequency is close to the resonant frequency of the vibrator's surroundings, experimental results show that the linear motor can move back and forward with a maximum thrust force (over 0.016 N) and a maximum velocity (over 50 mm/s).  相似文献   

15.
A new U-type micro-actuator for precisely positioning a magnetic head in high-density hard disk drives was proposed and developed. The micro-actuator is composed of a U-type stainless steel substrate and two piezoelectric ceramic elements. Using a high-d31 piezoelectric coefficient PMN-PZT ceramic plate and adopting reactive ion etching process fabricate the piezoelectric elements. Reliability against temperature was investigated to ensure the practical application to the drive products. The U-type substrate attached to each side via piezoelectric elements also was simulated by the finite-element method and practically measured by a laser Doppler vibrometer in order to testify the driving mechanics of it. The micro-actuator coupled with two piezoelectric elements featured large displacement of 0.875 microm and high-resonance frequency over 22 kHz. The novel piezoelectric micro-actuators then possess a useful compromise performance to displacement, resonance frequency, and generative force. The results reveal that the new design concept provides a valuable alternative for multilayer piezoelectric micro-actuators.  相似文献   

16.
The piezoelectric ultrasonic composite transducer, which can be used in either gas or liquid media, is studied in this paper. The composite transducer is composed of a longitudinal sandwich piezoelectric transducer, a mechanical transformer, and a metal circular plate in flexural vibration. Acoustic radiation is produced by the flexural circular plate, which is excited by the longitudinal sandwich transducer and transformer. Based on the classic flexural theory of plates, the equivalent lumped parameters for a plate in axially symmetric flexural vibration with free boundary conditions are obtained. The radiation impedance of the plate is derived and the relationship between the radiation impedance and the frequency is analyzed. The equivalent circuits for the plate in flexural vibration and the composite transducer are given. The vibrational modes and the harmonic response of the composite piezoelectric transducer are simulated by the numerical method. Based on the theoretical and numerical analysis, two composite piezoelectric ultrasonic transducers are designed and manufactured, their admittance-frequency curves are measured, and the resonance frequency is obtained. The flexural vibrational displacement distribution of the transducer is measured with a laser scanning vibrometer. It is shown that the theoretical results are in good agreement with the measured resonance frequency and the displacement distribution.  相似文献   

17.
A system consisting of a circular multilayered thin-film elastic plate and a piezoelectric actuator, which is generally used for ultrasound generation in air, is studied in this paper. Effects of the electrode dimension of a circular thinfilm piezoelectric actuator lying on a clamped multilayered elastic plate are discussed theoretically, while the first-order theory of asymmetrically laminated piezoelectric plates with consideration of coupled extension and flexure of the reference plane is used. Numerical results show that the deflection of the elastic plate can be optimized by adjusting the radius of the top electrode.  相似文献   

18.
A novel multilayer split-morph actuator has been designed and fabricated using the thick film screen-printing technology. Deflection characteristics of the split-morph actuator have been investigated by theoretical analysis and experimental measurement. The results indicate that the tip displacement is inversely proportional to the thickness of each piezoelectric layer, but is independent of the number of layers and the total thickness of the actuator. The displacement/voltage sensitivity of the trapezoidal actuator is larger than that of the rectangular design, assuming both have the same width of clamped end and the same thickness of the piezoelectric layers. The maximum displacement/voltage sensitivity of 0.157 micron/V was obtained with a split-morph actuator with 30-micron thick layers. The proposed actuator is a promising candidate for the secondary fine-tuning actuator of a dual stage head-positioning servo system in high density hard disk drives.  相似文献   

19.
The active vibration control of a composite plate using discrete piezoelectric patches has been investigated. Based on first order shear deformation theory, a finite element model with the contributions of piezoelectric sensor and actuator patches to the mass and stiffness of the plate was used to derive the state space equation. A global optimization based on LQR performance is developed to find the optimal location of the piezoelectric patches. Genetic algorithm is adopted and implemented to evaluate the optimal configuration. The piezoelectric actuator provides a damping effect on the composite plate by means of LQR control algorithm. A correlation between the patches number and the closed loop damping coefficient is established.  相似文献   

20.
晶体结构对压电陶瓷微位移驱动器特性的影响   总被引:5,自引:0,他引:5  
对钙钛矿结构的PZT-5和钨青铜结构的PBNN二种压电陶瓷制成的压电微位移器进行了电压-位移特性的比较和分析,发现我们所研制的PBNN压电微位移器具有线性好、回零好、等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号