首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
ABSTRACT

An experimental system is designed for the measurement of the evaporation and growth kinetics of individual solution droplets. Electrostatically charged droplets, nominally tens of micrometers in diameter, are suspended in a hyperboloidal electrodynamic chamber by balancing the droplet ueight against a uniform electrostatic field. By controlling the mixing dynamics in the chamber with specific flow configurations, a continuously mixed chamber is achieved. Consequently the Instantaneous chamber relative humidity is predicted from an exponential law with o characteristic relaxation time which is given by the ratio of the chamber volume and the gas volumetric flow rate. The evaporation and growth kinetics of phosphoric acid droplets is measured for relative humidity changes between 30 and 80%. Comparison between experimental and theoretical instantaneous droplet masses reveals less than a 5% deviation.The present system is employed to analyze the effect of adsorbed hexadecanol surfactant molecules on the evaporation and growth kinetics of phosphoric acid droplets. It is found a critical coverage exists which will result in a dramatic reduction in the evaporation kinetics of solution droplets. ConcomiCantly, the condensation coefficient is reduced from unity to 4.0 x 10-5 as droplet kinetics occur in the presence of a complete monolayer of hexadecanol.  相似文献   

2.
Theoretical investigation into evaporation of additive droplets in the combustion chamber of a pulse MHD generator were undertaken. Flow in the chamber is considered as stationary and one-dimensional; mixing in a direction perpendicular to flow is believed to be ideal, and mixing is lacking in the flow direction. It is suggested that droplets are monodisperse, spherical, and motionless relative to the gas medium. The droplet evaporation can be taken as occurring in the diffusion mode. The specific heat c p and heat conductivity coefficient are taken to be constant and independent of temperature and the concentration of components. The Lewis number is believed to be the unit value; and the Soret and Dufour effects, negligible. A formula for calculation of the droplet evaporation rate with allowance made for chemical reactions occurring in liquid and gas media is obtained.  相似文献   

3.
确保喷雾液滴在接触烟道壁面前完全蒸发,是保障电站脱硫废水在锅炉尾部烟道内蒸发处理安全运行的关键。喷雾液滴的破碎、聚并等动力学行为,以及液滴群的粒径分布和速度等因素的影响机制,是喷雾蒸发的主要特性。设计搭建了热态风洞实验台,利用激光粒度分析仪和粒子图像测速仪(particle image velocimeter,PIV),在不同的引射空气压力、喷嘴水流量,以及风速、加热空气温度等条件下,对喷雾液滴群的粒径变化和速度变化进行了测量和分析。实验结果表明:以大液滴形态离开喷嘴的射流在引射气流的携带作用下,因破碎而形成小液滴,而后液滴间聚并效果会显现出来。液滴初始粒径仅与引射气体压力和水流量有关;风速的提高一定程度上会促进液滴间的聚并。提高高压气体压力、温度、风速以及减小水流量均有助于提高液滴群速度,其中提高风速对液滴群的增速效果最为明显。研究结果为喷雾的数值模拟及工程应用改进方向提供了参考。  相似文献   

4.
In this paper, the flash evaporation process of saltwater droplets released into vacuum is experimentally investigated. During the experiment, a saltwater (NaCl) droplet was suspended on a thermocouple junction, which was used to measure the temperature evolution. The droplet surface temperature was captured by an infrared thermal imager, and the shape variation was recorded by a high speed camera. According to the experimental results, the component and solution concentration has great influence on the evaporation process. With a rise of salt concentration in water, the evaporation rate decreases. The shape of temperature transition curve also depends on the salt concentration in solution, no matter whether it is higher or lower than the eutectic point (22.4%). The effects of environmental pressure, initial droplet temperature and initial droplet diameter on the temperature transition of droplets were also summarized based on the experimental data.  相似文献   

5.
Tu H  Ray AK 《Applied optics》2001,40(15):2522-2534
Techniques are presented for analysis of time-dependent scattering spectra from single droplets undergoing physical changes. Times of appearance of resonances in experimental spectra are aligned with theoretical resonances, and the size and refractive index of a droplet as functions of time are determined from the minimum errors in alignment between observed and theoretical resonances. The techniques have been applied to time-dependent elastic scattering spectra obtained from single droplets evaporating under quasi-steady conditions and during unsteady growth. The results of quasi-steady evaporation data show that size and refractive index can be determined with relative errors of 1 x 10(-4). The quasi-steady evaporation data of a droplet are used to identify the resonances observed during the unsteady growth of the same droplet, and the size and refractive index at each resonance are calculated from the identity of the resonance.  相似文献   

6.
Study on ice slurry production by water spray   总被引:2,自引:0,他引:2  
A theoretical and experimental study was performed to examine the water spray method of ice slurry production. First, the conditions for the formation of ice particles were investigated theoretically by the diffusion-controlled evaporation model. The prediction of the model was proved to agree relatively well with experiments in which we examined the conditions for a droplet of initial temperature 20°C and size 50 μm to change into an ice particle in a chamber of height 1.33 m. Second, the production of cold storage heat will increase almost proportionally to the number of spray nozzles because no substantial difference was found in the Sauter Mean Diameter (SMD) of sprays from single and twin nozzle. Third, an ice slurry was experimentally obtained by spraying droplets of 7% ethylene glycol aqueous solution in a vacuum chamber where pressure is maintained below the freezing point of the solution. Finally, based on the theoretical and experimental results, we propose an optimizing chart for providing the operating conditions to make ice slurry using the relations of the staying time of the droplet in the chamber, the injection pressure, the spray droplet size and the chamber pressure.  相似文献   

7.
This paper reports an experimental and theoretical study of rapid evaporation of ethanol droplets and kerosene droplets during depressurization. For experimental method, an ethanol droplet or a kerosene droplet was suspended on a thermocouple, which was also used to measure the droplet center temperature transition. And the droplet shape variation was recorded by a high speed camera. A theoretical analysis was developed based on the heat balance to estimate the droplet center temperature transition, and the evaporation model proposed by Abramzon and Sirignano was used to describe the droplet vaporization. According to the experimental data and theoretical analysis, both of the environmental pressure and the initial droplet diameter have a prominent influence on the droplet temperature transition. Comparing the evaporation processes of ethanol droplets and kerosene droplets with water droplets, the ethanol droplets have the fastest evaporation rate, followed by water, and the evaporation rates of kerosene droplets are the slowest. Also it was found that a bubble can easily emerge within kerosene droplet, and its lifetime is more than 1 s.  相似文献   

8.
By means of high-speed video registration, the cross-correlation system, and panoramic optical methods of trace visualization, experimental estimation of the influence of liquid (water) droplet evaporation on the conditions of droplet movement (acceleration and deceleration) through the high-temperature (about 1100 K) gases was made. The experiments were conducted with droplets about 1–6 mm in diameter at start velocities of 1–5 m/s. We compare the integral characteristics of the droplet movement in the air at a temperature of about 300 K (in the ongoing flow and through the steady gas medium) and in the combustion product flow at a temperature of about 1100 K. The gas and the air flow velocities were about 1.5 m/s. The typical difference in the droplet velocities under essentially different ambient temperatures was discovered. The contribution of water evaporation and the ongoing gas movement into droplet deceleration was discovered.  相似文献   

9.
We have studied the growth of droplets in a thin layer of aqueous ethanol solution under conditions of the solutocapillary convective flow controlled by a laser beam. It is established that, with increasing layer thickness, the time necessary for the formation of a droplet separated from the layer increases, while the time required for the droplet to reach its maximum possible diameter (determined by the criteria of stability) decreases. In the initial stage of droplet formation, the diameter exhibits some decrease related to a short-term increase in the solvent evaporation rate.  相似文献   

10.
Motion and evaporation of droplets significantly affect the semidry flue gas desulfurization efficiency and long-term operation. Both the flow field distribution and the heat and mass transfer in the spray towers are studied by numerical simulation, and the process of droplet motion and evaporation is analyzed in detail. Then, two indices, mixing variance and droplet mass-weighted life, are provided to quantify gas droplet mixing and the droplet group evaporation time. The simulation results show that the radial penetration distance of the droplets is longer with the diameter increase, and the appropriate swirl number improves the mixing between the flue gas and droplets. With the increase of droplet diameter and velocity, the droplet distribution in the tower is more widely, obtaining the optimum mixing variance. The droplet mass-weighted life is promoted linearly with the increase of average droplet diameter and the decrease of flue gas temperature. With flue gas temperature increase from 458 k to 488 K, the droplet mass-weighted life decreases linearly by 31%. In comparison, the initial droplet velocity and spray angle have a slight effect on the droplet mass-weighted life.  相似文献   

11.
Two novel laser-based imaging techniques centered on particle image velocimetry and optical patternation are used to map and contrast the size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. The flow field of droplets is illuminated by two pulses from a thin laser sheet with a known time difference. The scattering of the laser light from droplets is captured by a charge-coupled device (CCD), providing two instantaneous images of the particles. Pointwise cross-correlation of the corresponding images yields a two-dimensional velocity map of the aerosol velocity field. For droplet size distribution studies, the solution is doped with a fluorescent dye and both laser-induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. The ratio of the LIF/Mie images provides relative droplet size information, which is then scaled by a point calibration method via a phase Doppler particle analyzer. Two major findings are realized for three nebulization systems: (1) a direct injection high-efficiency nebulizer (DIHEN); (2) a large-bore DIHEN; and (3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. First, the central region of the aerosol cone from the direct injection nebulizers and the nebulizer-spray chamber arrangement consists of fast (>13 and >8 m/s, respectively) and fine (<10 and <5 microm, respectively) droplets as compared to slow (<4 m/s) and large (>25 microm) droplets in the fringes. Second, the spray chamber acts as a momentum separator, rather than a droplet size selector, as it removes droplets having larger sizes or velocities. The concepts and results presented in this research may be used to develop smart-tunable nebulizers, for example, by using the measured momentum as a feedback control for adjusting the nebulizer, i.e., its operating conditions, its critical dimensions, or both.  相似文献   

12.
We provide experimental results from the scattering of light by deformed liquid droplets and droplets with inclusions. The characterization of droplet deformation could lead to improved measurement of droplet size as measured by commercial aerodynamic particle-sizing instruments. The characterization of droplets with inclusions can be of importance in some industrial, occupational, and military aerosol monitoring situations. The nozzle assembly from a TSI Aerodynamic Particle Sizer was used to provide the accelerating flow conditions in which experimental data were recorded. A helium-neon laser was employed to generate the light-scattering data, and an externally triggered, pulsed copper vapor laser provided illumination for a droplet imaging system arranged orthogonal to the He-Ne scattering axis. The observed droplet deformation correlates well over a limited acceleration range with theoretical predictions derived from an analytical solution of the Navier-Stokes equation.  相似文献   

13.
A mathematical model of a fluctuating Burke-Schumann spray-diffusion flame is presented. A sectional approach is utilized to describe the spray of droplets. An analytic solution is presented for a periodically alternating supply of liquid/vapor fuel. Calculated data highlight the dynamics of the flame envelope under the fluctuating supply condition, as well as its sensitivity to liquid-fuel volatility and droplet size (expressed through a nondimensional Damkohler number for evaporation). The predicted flame shape dynamics is rather similar, qualitatively, to some experimental evidence in which flame growth and collapse are observed.  相似文献   

14.
A model of two-phase flow in the droplet regime has been considered as a particular case of a more general model with simplifying assumptions acceptable for the calculation of the evaporation of water in the case of injection into the channel of a gas-turbine engine. The chosen implicit integration scheme allows engineering calculations for a highly stiff polydisperse system appearing under the complete evaporation of a group of droplets. A procedure has been developed to avoid a critical point in the process of the simulation of evaporation (division by zero) at zero diameter of droplets or equal velocities of droplets and gas.  相似文献   

15.
以某台220t/h煤粉锅炉为研究对象,对选择性非催化还原过程中尿素溶液还原剂与烟气的混合问题进行数值研究.计算表明,还原剂液滴喷入炉内1 100℃左右的高温区后,迅速经历加热、沸腾和蒸发过程,液滴的停留时间很短,因此增加还原剂射流穿透深度可有效提高混合程度.以还原剂质量分数的相对标准偏差为混合程度的衡量指标,分析了还原剂喷射速度、流量、液滴粒径以及锅炉等因素的影响,发现降低锅炉负荷、提高还原剂喷射速度和流量均可有效提高混合程度,而液滴粒径对混合具有双重影响,一般存在最佳粒径范围.  相似文献   

16.
One of the authors has proposed a novel transport/storage system for the waste cold from the gasification process of liquefied natural gas (LNG), which consists of an evaporator, a cold trap, and a pipeline. In order to estimate the performance of this system, one should know the pressure in the evaporator, in which evaporation–freezing of a PCM occurs, and in the cold trap, as well as the pressure drop of the pipeline due to the flow of low pressure vapor of the PCM. In this paper, the cooling/freezing phenomena of a water droplet due to evaporation in an evacuated chamber was experimentally examined, and the heat transfer dominating the evaporation-freezing phenomena was investigated in order to estimate the pressure in the evaporator. From the results, it was shown that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through a remarkable supercooling state, and that the cooling rate of the water droplets were dominated by heat transfer within the droplet under the abrupt evacuation condition. The later result means that, in order to obtain an ice particle by evaporation–freezing, the surroundings of the water droplet should be evacuated at the pressure as low as the saturate pressure of water at the maximum supercooling temperature of the droplet.  相似文献   

17.
The results of theoretical and experimental investigation of the evaporation of picoliter water droplets on a substrate at reduced pressure (20–80 Torr) have been given. The substrate temperature varied in the range 25–40°C. The calculations have been carried out in a free-molecular approximation. It has been shown that the evaporation time sharply decreases if the average droplet height is less than 10 μm and is a few milliseconds for a 5-μm-high droplet. It has been experimentally and theoretically shown that for droplets higher than 10 μm, the evaporation time is a few seconds in the investigated pressure range.  相似文献   

18.
We have completed an experiment for droplet evaporation processing using Young-Laplace fitting, exponent fitting, polynomial fitting and ellipse fitting, which could be used for multiple shapes of droplets. The droplet evaporation experiment test was an important science experiment in SJ-10. In order to get the change process of the physical parameter, such as the touching edges and the droplet evaporation rate, we had gained the contour edge image of the droplet and used mathematic method to do the fitting analysis. The accuracy of the physical parameter was depended on the accuracy of the mathematic fitting. Using the original Young-Laplace fitting method could not process all the images of evaporation and liquid interface from the space experiment facility of SJ-10, especially the smaller droplet images. We could get more accurate contour fitting and result using the new method described in this article. This article proposes a complete solution, including edge detecting and contour fitting. In edge detecting, Canny detector was applied to extract droplet edge. In contour fitting, Young-Laplace fitting, exponent fitting, polynomial fitting and ellipse fitting are designed to fit the contour of droplets, which make the solution apply to all of droplets in SJ-10.  相似文献   

19.
A comparison is made between the processes of adiabatic evaporation of a polydisperse system of droplets and a monodisperse system with droplets equal in size to the largest droplet of the polydisperse system. The process takes place in air with the same initial and final parameters in both cases.  相似文献   

20.
We provide an overview of research on the mathematical modeling of apparent contact lines in non-isothermal systems conducted over the past several decades and report a number of recent developments in the field. The latter involve developing mathematical models of evaporating liquid droplets that account not only for liquid flow and evaporation, but also for unsteady heat conduction in the substrate. The droplet is placed on a flat heated solid substrate and is assumed to be in contact with a saturated vapor. Furthermore, we discuss a careful comparison between mathematical models and experimental work that involves simultaneous measurement of shapes of evaporating droplets and temperature profiles in the solid substrate. The latter is accomplished using thermochromic liquid crystals. Applications to new research areas, such as studies of the effect of evaporation on fingering instabilities in gravity-driven liquid films, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号