首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用两步法成功构筑SnO2/还原氧化石墨烯/聚苯胺(SnO2/RGO/PANI)三元复合材料。首先制备出均匀分散的SnO2/还原氧化石墨烯(SnO2/RGO)二元复合物,然后再以二元复合物为载体,通过苯胺(An)单体的化学氧化聚合获得终端产物。利用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)和场发射扫描电镜(FESEM)对复合材料的结构和形貌等物理性质进行表征,利用循环伏安测试、恒电流充放电测试和交流阻抗测试对复合材料的电化学电容性能进行研究,并讨论了PANI的含量对复合材料的结构和性能的影响。结果表明,所合成的三元复合材料的比电容随PANI含量的增加而增大,最大达到424.8F/g,其电容性能的增强源于SnO2、RGO与PANI三者的相互协同作用。  相似文献   

2.
将氧化石墨超声分散,在水合肼的作用下制备了在水相条件下稳定分散的还原氧化石墨烯(RGO);以十六烷基三甲基溴化铵(CTAB)为模板剂,RGO为掺杂剂,吡咯单体为原料,六水合三氯化铁(FeCl_3·6H_2O)为引发剂聚合制备聚吡咯/还原氧化石墨烯(PPy/RGO)导电复合材料。利用傅里叶红外光谱、X射线衍射和透射电子显微镜等手段对复合材料的理化性质进行表征,结果表明线状PPy成功聚合在RGO表面;热重分析和电导率测试结果显示,复合材料相对于PPy具有更高的热稳定性和电导率,电导率可达14S/cm。将PPy/RGO复合材料水性聚氨酯乳液制成复合涂层,考察了涂层的抗静电性能,发现PPy/RGO复合材料具有更低的逾渗阈值。  相似文献   

3.
张硕  于立岩 《材料导报》2017,31(10):32-36
在不同水醇比的溶剂环境下,利用原位聚合法制得聚吡咯/氧化石墨烯复合物,再经还原得到聚吡咯/还原氧化石墨烯复合材料。通过红外光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等测试方法对复合材料的结构和形貌进行表征,利用电化学工作站对复合物的电化学性能进行了测试。结果表明,在不同水醇比的溶剂条件下所制备的还原氧化石墨烯与聚吡咯复合材料都具有优异的电容性能和良好的稳定性。当水醇比为9∶1(体积比,下同)时,所制备的材料具有最稳定的电容性能。  相似文献   

4.
以吡咯为单体,多壁碳纳米管和氧化石墨烯为模板,过硫酸铵为氧化剂,采用原位化学聚合法制备了聚吡咯/多壁碳纳米管/氧化石墨烯(PPy/MWNTs/GO)复合材料.利用傅里叶变换红外光谱(FTIR)、X射线衍射谱(XRD)、扫描电镜(SEM)、循环伏安法(CV)和电化学交流阻抗谱(EIS)对制备复合材料的结构、微观形貌和电化学性能进行了研究,探讨了多壁碳纳米管/氧化石墨烯比例、吡咯用量对复合材料电容性能的影响.研究结果显示,PPy/MWNTs/GO复合材料具有较大的比电容和良好的循环稳定性,且具有较小的电荷转移电阻,接近于理想的超级电容器用电极材料.  相似文献   

5.
片状聚吡咯/氧化石墨烯复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
通过原位聚合在低温条件下(-10℃)制备具有片状微结构的聚吡咯(PPy)/氧化石墨烯(GO)复合材料,利用傅里叶红外光谱仪(FT-IR),扫描电子显微镜(SEM)对复合材料进行结构表征的基础上,利用循环伏安(CV)、恒流充放电(GC)、电化学阻抗技术(EIS)测试复合材料的电化学性能。FT-IR结果表明复合材料中GO与PPy存在相互作用;SEM结果表明复合材料显示为亚微米片状结构形貌;CV、GC、EIS电化学分析表明,与纯聚吡咯及氧化石墨烯相比,复合材料显示出优越的电容特性。当电流密度保持在1 A/g时,复合材料的比电容可达319 F/g,比GO(9 F/g)和PPy(167 F/g)的比电容都要高,该复合材料可用作潜在的超级电容器电极材料。  相似文献   

6.
具有独特二维纳米结构的石墨烯可为电子转移提供通道,使其复合材料具有优良的电容性能。聚吡咯(PPy)因具有超电容性能、聚合电位低和空气稳定性好等优点,常作为理想型电极材料。综述了原位化学氧化聚合法和电化学沉积法2种石墨烯/PPy复合材料的制备方法,以及石墨烯/PPy复合材料在超级电容器、微波吸收、燃料电池催化剂和传感器等电化学方面的应用现状,并展望了石墨烯/PPy复合材料的未来发展方向。  相似文献   

7.
本研究通过简单的自上而下的方法成功改进了氮化碳材料,并通过引入氧化石墨烯制备出薄层的石墨烯复合材料(CoOx/PCN/RGO),该复合材料在氧还原反应和氧析出反应中表现出良好的双功能电催化活性(ΔE=0.95 V)和稳定性.CoOx/PCN/RGO复合物作为锌-空气电池的阴极材料时,显示出优于Pt/C+Ir/C的充放电性能.CoOx/PCN/RGO复合材料的优异催化性能主要归因于其薄层结构、大的比表面积和充分暴露的活性中心.  相似文献   

8.
利用以苯胺与过硫酸铵制备的聚苯胺和改进的Hummers法制备的氧化石墨烯(GO)为原料,将聚苯胺分散于GO浊液中,再对GO进行还原,制备超级电容器电极材料石墨烯(RGO)/聚苯胺(PANI)复合材料(GRP),利用X射线衍射(XRD)对其结构进行了表征,并对复合材料电化学性能进行了测试。结果表明,复合材料展示良好比电容特性,同时又具有稳定电化学性能。GRP在0.1A/g的电流密度下比电容达到510F/g,1.0A/g电流密度下比电容为485F/g,经过2000次的充放电循环后比电容保持率为92%,即复合物比电容远大于石墨烯,在化学稳定性上远好于PANI。放电响应效率高,在电极中电解质离子容易扩散和迁移。  相似文献   

9.
用模板法制备聚吡咯纳米管(PPyNTs),然后采用乙醇混合法将其和多壁碳纳米管(MWCNTs)制备了复合电极材料(PM)。比较不同材料在传统H_2SO_4电解液和添加了具有氧化还原活性物质胭脂红(AR18)的电解液中的电化学性能。三电极测试结果表明,在H_2SO_4电解液中PPy纳米颗粒的比电容为220 F/g,在氧化还原电解液中,PPyNTs的比电容为579.2 F/g,高于PPy纳米颗粒(445 F/g),而PM复合材料的最高比电容可达674.2 F/g,既高于单一PPyNTs又高于MWCNTs的(405.8 F/g)。利用性能优化的PM-3复合材料组装对称电容器,当电流密度为0.5 A/g时,功率密度为300 W/kg,能量密度达15.7 Wh/kg,且经过5000次循环,电容保持率为90%。说明AR18和H_2SO_4构建的氧化还原电解液能够提供额外的氧化还原反应,使具有双电层电容和赝电容的复合材料具有更加优良的电化学性能。  相似文献   

10.
以氧化石墨烯(GO)和SnCl_4·5H_2O为前驱体,通过水热法制备了SnS_2/还原氧化石墨烯(RGO)复合材料。用X射线衍射(XRD)、扫描电镜(SEM)、拉曼光谱和紫外-可见(UV-Vis)吸收光谱表征了所制备的样品。在可见光(λ≥420nm)光照下光催化降解甲基橙水溶液来检测SnS_2/RGO复合物的光催化活性。结果表明:所制备的SnS_2/RGO复合物表现出增强的可见光光催化活性,其中,含1%(wt,质量分数,下同)石墨烯的复合光催化剂活性最好。SnS_2/RGO复合物光催化活性的增强是由于石墨烯是优秀的电子受体和传输体,它减少了光生载流子的复合,从而提高了光催化活性。  相似文献   

11.
为了制备价格低廉且比电容高、循环稳定性好的电容器材料,采用电化学法合成石墨烯基含镍金属有机骨架材料Ni-BTC/RGO,研究含镍金属有机骨架材料Ni-BTC的合成条件以及Ni-BTC/RGO的电化学性能。对不同条件下的系列Ni-BTC材料进行XRD分析,并对Ni-BTC,RGO和Ni-BTC/RGO进行SEM测试、循环伏安测试和恒电流充放电测试。结果表明:工作电压为6 V、反应时间为3 h、反应体系温度为35℃是Ni-BTC的最佳合成条件;Ni-BTC和RGO成功复合且RGO对Ni-BTC的结构并未产生影响;复合材料主要表现赝电容电化学行为。在0.5 A·g^(-1)电流密度下,Ni-BTC/RGO的比电容为468.72 F·g^(-1),功率密度为0.249 W·g^(-1);在1.0 A·g^(-1)电流密度下循环500周次以后,比电容保留率为50.08%。  相似文献   

12.
采用化学原位聚合的方法制备了聚吡咯/二氧化钛(PPy/TiO_2)复合物,其中聚吡咯和二氧化钛的质量比分别为1∶1、2∶1、3∶1、4∶1,将其作为电化学超级电容器的电极材料,采用扫描电子显微镜和X射线衍射仪研究了PPy/TiO_2的形貌和相组成,通过电化学测试研究了PPy/TiO_2的电化学性能.结果表明:TiO_2均匀地包覆在PPy基体中,PPy/TiO_2的电化学性能明显优于纯PPy;当PPy与TiO_2的质量比为3∶1时复合材料的电化学性能最佳,即在2 A/g充放电电流密度下,其比电容达到了255.68 F/g,比纯PPy提高了2倍左右;在1 A/g充放电电流密度下,循环充放电1 000圈之后PPy/TiO_2的比电容保持率为87.2%,纯PPy的比电容保持率仅为46.9%.  相似文献   

13.
MnO2为有前景的超级电容器正极材料,具有较高的理论比电容及良好的循环稳定性,但电子电导性不佳限制了其应用。采用一步水热法制备了还原氧化石墨烯(RGO)/NixMn1-x/2O2复合材料。通过XRD、SEM、TEM、FTIR、电化学分析等手段对制备的RGO/NixMn1-x/2O2物相组成、微观形貌和电化学性能进行了表征和分析。电化学测试结果表明:Ni元素的引入提高了MnO2的电容性能,以水热法制备的MnO2的比电容为66 F/g (扫描速度10 mV/s),而Ni元素掺杂量x=0.02时,Ni0.02Mn0.99O2比电容为111 F/g;材料中引入RGO后,RGO/NixMn1-x/2O2复合材料电容性能进一步提高,加入2wt%的RGO时,RGO/Ni0.02Mn0.99O2的比电容为136 F/g。RGO的引入提高了活性材料的电子迁移速率,Ni元素的掺杂造成了MnO2晶格中存在适量的点缺陷,提高了其导电性。以RGO/NixMn1-x/2O2为正极的超级电容器可同时具备双电层电容器和赝电容器的优点,以Ni掺杂MnO2和RGO的负载协同提高了该复合材料电化学性能。  相似文献   

14.
利用简单易行的化学沉淀-回流法制备了Ni(OH)_2/还原氧化石墨烯(RGO)复合材料,研究了不同混合氨-碱沉淀剂对复合材料电化学性能的影响。采用XRD、拉曼光谱(Raman)和SEM表征Ni(OH)_2/RGO复合材料的微观结构和形貌。当以NH_3·H_2O-NaOH作为沉淀剂时,Ni(OH)_2/RGO复合材料中β-Ni(OH)_2纳米片均匀分散在石墨烯片层之间,形成相互插层结构。利用循环伏安(CV)、恒电流充放电(GCD)和电化学交流阻抗(EIS)测试了复合电极材料的电化学性能。研究结果表明:放电倍率为0.2C时,Ni(OH)_2/RGO复合电极材料的放电比容量达到344.8mAh/g,比β-Ni(OH)2的放电比容量高出约29%;5C时放电比容量为274.5mAh/g,经过50个循环,容量保持率为98.8%,呈现出良好的倍率性能和循环性能。  相似文献   

15.
利用简单易行的一步水热法制备了Ni(OH)2-碳纳米管-还原氧化石墨烯(Ni(OH)2-CNTs-RGO)三元复合材料,研究了不同水热反应温度对三元复合材料性能的影响。采用XRD、FTIR、Raman、X射线光电子能谱(XPS)、SEM及TEM对Ni(OH)2-CNTs-RGO复合材料的结构和表面微观形貌进行表征。利用循环伏安(CV)、电化学交流阻抗(EIS)和恒电流充放电测试了复合电极材料的电化学性能。研究结果表明,当反应温度为120℃时,所制备的Ni(OH)2-CNTs-RGO复合材料具有大的比表面积和三维网状结构,复合材料中六角形的β-Ni(OH)2纳米片和CNTs均匀分散在RGO片层表面,有效阻止了RGO的团聚。Ni(OH)2-CNTs-RGO复合电极材料在充电倍率为0.2 C时,放电比容量达到362.8 mAh/g,5 C时放电比容量为286.2 mAh/g,仍大于Ni(OH)2在0.2 C时的放电比容量,表明CNTs与RGO的协同作用有效提高了电极材料的导电性和活性物质的利用率,最终提升了Ni(OH)2-CNTs-RGO复合材料的倍率性能。  相似文献   

16.
The sandwich-like structure of reduced graphene oxide/polyaniline(RGO/PANI) hybrid electrode was prepared by electrochemical deposition. Both the voltage windows and electrolytes for electrochemical deposition of PANI and RGO were optimized. In the composites, PANI nanofibers were anchored on the surface of the RGO sheets, which avoids the re-stacking of neighboring sheets. The RGO/PANI composite electrode shows a high specific capacitance of 466 F/g at 2 m A/cm~2 than that of previously reported RGO/PANI composites. Asymmetric flexible supercapacitors applying RGO/PANI as positive electrode and carbon fiber cloth as negative electrode can be cycled reversibly in the high-voltage region of 0–1.6 V and displays intriguing performance with a maximum specific capacitance of 35.5 m F cm~(-2). Also, it delivers a high energy density of 45.5 m W h cm~(-2) at power density of 1250 m W cm~(-2). Furthermore, the asymmetric device exhibits an excellent long cycle life with 97.6% initial capacitance retention after 5000 cycles.Such composite electrode has a great potential for applications in flexible electronics, roll-up display,and wearable devices.  相似文献   

17.
Reduced graphene oxide (RGO)–NiO composites have been fabricated by a simple solvothermal route starting with graphite oxide (GO). The morphology, composition and microstructure of the as-obtained samples are systematically characterized by thermogravimetric (TG) analysis, X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Moreover, the electrochemical performances of composites were evaluated by cyclic voltammogram (CV) and galvanostatic charge–discharge. Interestingly, it was found that the electrochemical performance of the composites could be affected by the mass ratio between RGO and NiO. The composite with the mass ratio up to 79:21 (NiO:RGO) exhibits the highest specific capacitance of 576 F g−1 at 1 A g−1, which is much higher than that of pure NiO (240 F g−1) and pure RGO (98 F g−1). In addition, the cycling measurements showed that RGO–NiO composite exhibited excellent cycling stability with no decay in the available capacity over 1100 cycles. The enhancement in specific capacitance and cycling stability may be attributed to the increased electrode conductivity owing to RGO network, the increased effective interfacial area between NiO and the electrolyte, as well as the contact area between NiO and RGO.  相似文献   

18.
为研究还原剂对Ni(OH)_2/还原氧化石墨烯(RGO)复合材料结构及电化学性能的影响,首先以氧化石墨烯(GO)和硝酸镍作前驱体,采用水热法制备了Ni(OH)_2/RGO复合材料;然后,利用XRD、SEM和Raman光谱仪表征了复合材料的结构和形貌,并采用循环伏安法、恒流充放电曲线和电化学阻抗谱研究了复合材料的电化学性能。结果表明:以(NH2)2CSO2作还原剂时,制备的β-Ni(OH)_2/RGO复合材料为RGO纳米片与Ni(OH)_2纳米片相互插层的结构;在电解液(6mol/L KOH溶液)中,0.2C放电倍率时β-Ni(OH)_2/RGO复合材料的比容量高达341.0mAh/g,10.0C放电倍率为时复合材料的比容量为242.2mAh/g,仍能保持β-Ni(OH)_2理论比容量的83.8%。所得结论表明制备的Ni(OH)_2/RGO复合材料显现出良好的电化学性能。  相似文献   

19.
为扩展石墨烯的宏观应用,制备性能优异的三维聚苯乙烯/聚苯胺/石墨烯(PS/PANI/graphene)复合微粒具有重要意义.以聚苯乙烯微粒为模板,通过2种浓度苯胺单体的原位生长得到2种聚苯乙烯/聚苯胺复合微粒,再利用氧化石墨烯与苯乙烯/聚苯胺微粒间的静电、共轭相互作用制备三维PS/PANI/graphene复合微粒.利用红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射(XRD)、热重分析(TG)对其微观形貌、结构进行表征,利用电化学测试对三维复合微粒电化学性能进行测试.结果表明,复合材料保持了聚合物微粒的基本形貌,具有三维结构,并有优异的比电容(578 F/g)和循环稳定性(循环900次,容量保持81.5%),其电性能远优于单纯石墨烯和聚苯胺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号