首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
本文利用化学法合成了Au纳米颗粒、Au@SiO2、以及Au@SiO2@LaF3:Eu的纳米核壳结构,并利用透射电镜、紫外可见吸收谱以及荧光光谱对它们的形貌、吸收和发光性能进行了表征。研究表明:通过控制柠檬酸和氯金酸以及正硅酸乙酯和氨水比例可以对Au纳米颗粒的尺寸以及SiO2层的厚度分别进行调控。当Au纳米颗粒的尺寸和SiO2层厚度增加时,Au表面等离子体共振吸收峰发生红移。在Au@SiO2@LaF3:Eu纳米核壳结构中,Au表面等离子体共振对LaF3:Eu纳米颗粒的发光产生减弱作用。另外,Eu掺杂浓度对Au@SiO2@LaF3:Eu纳米核壳结构的5D0→7F2和5D0→7F1跃迁强度比有很大的影响。  相似文献   

2.
铜纳米晶-有序多孔氧化铝复合膜光学性能的研究   总被引:1,自引:0,他引:1  
采用常压直流电沉积技术在有序多孔氧化铝(OPAA)模板内沉积Cu纳米晶,制备出光学透明的铜纳米晶/OPAA复合膜.利用FESEM、TEM、紫外可见分光光度计、Z-scan技术、泵浦探测技术对该复合材料的形貌、结构、线性光吸收、三阶非线性极化率和光响应时间进行了分析.结果表明,Cu纳米颗粒具有面心立方结构,直径在40~50 nm之间,分布在OPAA模板的分叉孔道区.填充于有序多孔氧化铝模板中的Cu纳米晶在584 nm处出现等离子体共振吸收峰.当探测光波长远离铜纳米晶的等离子体共振吸收峰时,Cu纳米晶/多孔氧化铝复合膜出现光致吸收特性,而当探测光波长接近铜纳米晶的等离子体共振吸收峰时,出现光致漂白现象.该复合膜非共振三阶非线性极化率为0.73×10-9esu,光响应时间为1.3ps.  相似文献   

3.
Au/Ag芯-壳复合结构纳米颗粒的制备和表征   总被引:1,自引:1,他引:1  
闫仕农  王永昌  郝丽梅  魏天杰 《功能材料》2005,36(3):425-426,430
利用二步液相还原法制备了 Au/Ag 芯 壳复合结构的纳米颗粒。用 TEM对反应液中金离子和银离子的摩尔比分别为1∶2和1∶1时所制备的 Au/Ag芯 壳复合结构的纳米颗粒的尺寸和形貌进行了表征。其紫外 可见吸收光谱具有 2 个可区分的吸收带,与纯金和纯银纳米颗粒的光学吸收特性对比后认为:随着反应液中银离子摩尔份数的增加,等离子体共振吸收峰始终位于 410nm附近的吸收带为银纳米颗粒的等离子体吸收带;另一个将随之产生蓝移的吸收带为Au/Ag芯 壳复合结构纳米颗粒的等离子体吸收带,蓝移是由于银壳厚度的增加而引起的。  相似文献   

4.
Ag离子注入石英玻璃光学透射率研究   总被引:4,自引:0,他引:4  
用Mevva离子源,将Ag离子注入到石英玻璃中形成纳米晶粒。离子注入的能量为90keV,剂量分别为5×1015、1×1016、3×1016、5×1016、1×1017ions/cm2。X光电子能谱(XPS)分析纳米Ag颗粒没有发生化学反应,说明Ag仍以金属态形式存在。光学透射率测试表明,吸收峰的位置在400nm,当剂量大于5×1016ions/cm2时,发现在440nm左右有一伴峰。分析表明400nm的峰来源于表面等离子体共振吸收,而440nm的伴峰是注入离子形成了少数非常大的纳米颗粒以及纳米颗粒之间相互作用引起的。样品退火后,表面等离子体共振吸收峰红移,而伴峰消失。随着退火的温度升高,峰位红移越大,说明纳米颗粒尺寸增大。  相似文献   

5.
采用离散偶极子近似方法(discrete dipoleapproximation,简称DDA)从理论上对玻璃基底上不同粒径的Au纳米粒子结构阵列的消光光谱以及消光峰与纳米粒子粒径的关系进行了研究。计算结果显示玻璃基底上的Au纳米粒子结构阵列的消光谱中出现明显区别于Au单体纳米粒子的共振峰,玻璃基底上的Au纳米粒子结构阵列的消光性质与单体纳米粒子的粒径密切相关,随着纳米粒径的增大表面等离子体共振吸收峰出现明显红移,并且在粒径>40nm时出现多峰吸收现象。计算结果与实验结果基本一致。给出玻璃基底上的Au纳米粒子结构阵列的共振吸收峰随单体纳米粒子粒径变化的关系图。对Au纳米结构阵列的吸收机制进行系统的理论分析。  相似文献   

6.
Ag-Cu离子注入SiO2玻璃后形成纳米颗粒的研究   总被引:3,自引:0,他引:3  
肖湘衡  蒋昌忠  任峰  付强 《功能材料》2005,36(10):1555-1557
Ag、Cu离子经200和110keV加速后分别以5×1016和1.5×1017ions /cm2的剂量在室温下先后注入到非晶SiO2玻璃中.注入后样品的光学吸收谱显示两个吸收峰,其峰位为407和569nm,分别对应单独Ag和单独Cu纳米颗粒的等离子体共振吸收峰,样品在还原-保护气氛下退火后吸收峰峰强明显增加.样品的透射电镜选区电子衍射花样含有Ag、Cu两套衍射环,透射电镜的明场像观察到大量的纳米颗粒呈现出中心亮斑特征.在样品倾转过程中,中心亮斑特征依然存在,证实这种现象是离子辐照产生的纳米空位团簇.扫描透射电子显微镜高角环形暗场像进一步证实了这一点.综上所述,样品中形成了单Ag和单Cu包裹空位团簇的纳米颗粒.  相似文献   

7.
利用溶胶一凝胶法在玻璃基底上成功制备了Ag—SiO2复合纳米颗粒薄膜,SEM、TEM和XRD的表征分析表明Ag是以单晶纳米颗粒的形态均匀分散在SiO2基质中,形成了多孔状Ag—SiO2复合纳米颗粒薄膜。从Ag—SiO2复合纳米颗粒薄膜的光吸收谱发现,该复合薄膜中鲰纳米颗粒具有较强的等离子共振吸收峰,峰位在430nm附近,随着复合薄膜中Ag、Si摩尔比的逐渐增大,等离子共振吸收峰不断增强且发生蓝移,蓝移量可达30nm;研究Ag—SiO2复合纳米颗粒薄膜的光敛发光特性发现,当激发波长为220nm时,复合薄膜分别在330nm和375nm处出现了两个发光带,随着复合薄膜中Ag、Si摩尔比增大到0.11,两发光带均逐渐增强,继续增加Ag、Si摩尔比,两发光带又逐渐减弱,且375nm处的发光带变化尤为显著。  相似文献   

8.
赵兰强  胡锦莲 《硅谷》2011,(2):14-15
介绍一种以银的局域表面等离子共振原理来检测过氧化氢的方法,银纳米颗粒是通过AgNO3在聚乙烯醇(PVA)中发生热还原生成的,PVA在合成过程中既作为还原剂又作为保护剂,在合成过程中不需要其他的试剂。该方法合成的银纳米颗粒通过紫外—可见分光光度计、透射电镜、X射线衍射仪器表征。由于银纳米颗粒能够催化分解过氧化氢,因此在分解过程能够诱导银纳米颗粒的降解,从而引起银纳米颗粒的表面等离子体共振吸收峰强度的明显变化,而且黄色的银胶体因此变的透明,从而能够检测过氧化氢的含量。当这种透明的混合溶液经过热处理后,溶液会重新变为黄色,经研究发现又重新生成银胶体,表面这是一种可再生的过氧化氢传感方法,由于该方法灵敏、高效、廉价、易于操作等优点将会在医学和环境监测方面有着巨大的应用价值。  相似文献   

9.
光谱学研究银纳米颗粒在玻璃中的生成规律   总被引:2,自引:0,他引:2  
通过离子交换法将银离子引入白硅酸盐玻璃和绿硅酸盐玻璃,利用光致发光(photoluminescence-PL)和光吸收(optical absorption-OA)谱研究银离子的团簇化、成核和生长.由于白硅酸盐玻璃不含二价铁离子,因此,银纳米颗粒形成困难,颗粒体积分数非常低,以致样品中银纳米颗粒的共振吸收峰不明显.在这种条件下,样品中存在大量银离子和银的小原子团簇.在绿玻璃中,氧化铁含量较高,引入到玻璃中的银离子大部分被二价铁离子还原成中性银原子,通过热处理,银离子在玻璃中成核和生长.在相近的热处理条件下,绿玻璃有利于银纳米颗粒的生成.银纳米颗粒在形成过程中,消耗大量银离子,造成样品的发光强度逐渐降低.  相似文献   

10.
采用直流电弧放电等离子体技术成功制备了碳包覆NiO(NiO@C)纳米颗粒,并对样品的形貌、晶体结构、粒度、比表面积和孔结构采用高分辨透射电子显微镜、X射线衍射、X射线能量色散分析谱仪、拉曼散射光谱和N_2吸-脱附等测试手段进行了分析。实验结果表明:直流电弧等离子体技术制备的NiO@C纳米颗粒具有典型的核壳结构,内核为面心立方结构的NiO纳米颗粒,外壳为碳层。颗粒形貌主要为立方体结构,粒度均匀,分散性良好,粒径分布在30~70nm范围,平均粒径为50nm,外壳碳层的厚度为5nm。NiO@C纳米颗粒BET比表面积为28m~2/g,等效直径为46nm,与TEM和XRD测得的结果基本一致。Raman光谱说明样品中碳包覆层的石墨化程度较低,发生了红移现象。  相似文献   

11.
Morphology effects on the optical properties of silver nanoparticles   总被引:1,自引:0,他引:1  
Employing methods developed for the control of shape and size in silver nanoparticles, we have compared the optical properties of nanorods, nanoprisms, nanodisks, and nanospheres. Solutions of these particles show distinct surface plasmon resonant absorption signatures that are directly correlated with the symmetries of their morphology. Nonlinear optical behavior for suspensions of these nanostructures, for nanosecond pulses at 532 and 1064 nm, have been correlated to plasmon resonances determined by shape and size.  相似文献   

12.
In this paper, we study the temperature-dependent optical properties of gold–silver core–shell (Au@Ag) nanorods coated by a thermo-responsive polymer poly (N-isopropylacrylamide) (PNIPAM). The wavelength of the plasmonic resonant absorption of the nanohybrids changes with temperature due to the combination effects of the plasmon resonance of the core and the thermal response of the shell. Using effective medium theory, we find that with increase of temperature, the absorption peak red-shifts due to the competition effects from the changes of the thickness and the effective refractive index of the polymer shell. The working wavelength can be tuned by the aspect ratio of nanorods. Moreover, the temperature sensitivity of plasmon resonance increases with the increase of the aspect ratio. Our studies provide a proof-of-concept design of thermal responsive plasmonic smart material.  相似文献   

13.
In scanning tunneling microscopy (STM), confinement of surface plasmons to the optical cavity formed at the metallic tunneling gap stimulates the emission of light. We demonstrate that quantum dots (QDs) found in such a cavity give rise to discrete, observable transitions in the tunneling luminescence spectrum due to the resonant extinction of the plasmon. The observed resonances represent a fingerprint of the QD and occur at the optical band gap owing to the nearly simultaneous transfer of carriers from both sides of the tunneling gap to the QD. The resonant quenching of surface plasmons enables a new imaging technique, dubbed plasmon resonance imaging, with a spatial resolution potentially similar to that of STM and the energy resolution of optical spectroscopies. This detection and imaging strategy is not restricted to QDs, being of great interest to an entire spectrum of nanostructures, from molecular assemblies and biomolecules to carbon nanotubes.  相似文献   

14.
Optical bistability based on surface plasmon polaritons in the Kretschmann configuration involving a Kerr nonlinear medium is described by analytical solutions. The conditions of forming the optical bistability with different parameters are explored. The resonant angle of surface plasmon polaritons varying with the incident light intensity also generates the phenomenon of bistability. The system could form optical bistability with the special thickness of the metal film and incident angle. This kind of system has potential application in all-optical networks.  相似文献   

15.
Gold nanorods have been prepared by the seed-mediated growth method, in order to find the effect of stirring during the synthesis to the final shape and optical properties. The presence or absence of stirring during each step of the preparation procedure was considered a parameter to control in order to adjust the optical absorption associated with the surface plasmon resonance of the nanorods. Results show that the longitudinal surface plasmon resonance band shifts to larger wavelengths in the absence of stirring of the growth solution. Width and intensity of the absorption band associated with the longitudinal surface plasmon is reduced upon stirring during the synthesis. On the contrary, the position of the transversal surface plasmon resonance band scarcely depends upon stirring. Theoretical calculations performed using the Gans model are coherent with experimental obtained results, showing that as the aspect ratio increases, longitudinal plasmons absorption shifts toward larger wavelengths and increases both intensity and bandwidth.  相似文献   

16.
We map in real space and by purely optical means near-field optical information of localized surface plasmon polariton (LSPP) resonances excited in nanoscopic particles. We demonstrate that careful polarization control enables apertureless scanning near-field optical microscopy (aSNOM) to image dipolar and quadrupolar LSPPs of the bare sample with high fidelity in both amplitude and phase. This establishes a routine method for in situ optical microscopy of plasmonic and other resonant structures under ambient conditions.  相似文献   

17.
The plasmon‐optical effects have been utilized to optically enhance active layer absorption in organic solar cells (OSCs). The exploited plasmonic resonances of metal nanomaterials are typically from the fundamental dipole/high‐order modes with narrow spectral widths for regional OSC absorption improvement. The conventional broadband absorption enhancement (using plasmonic effects) needs linear‐superposition of plasmonic resonances. In this work, through strategic incorporation of gold nanostars (Au NSs) in between hole transport layer (HTL) and active layer, the excited plasmonic asymmetric modes offer a new approach toward broadband enhancement. Remarkably, the improvement is explained by energy transfer of plasmonic asymmetric modes of Au NS. In more detail, after incorporation of Au NSs, the optical power in electron transport layer transfers to active layer for improving OSC absorption, which otherwise will become dissipation or leakage as the role of carrier transport layer is not for photon‐absorption induced carrier generation. Moreover, Au NSs simultaneously deliver plasmon‐electrical effects which shorten transport path length of the typically low‐mobility holes and lengthen that of high‐mobility electrons for better balanced carrier collection. Meanwhile, the resistance of HTL is reduced by Au NSs. Consequently, power conversion efficiency of 10.5% has been achieved through cooperatively plasmon‐optical and plasmon‐electrical effects of Au NSs.  相似文献   

18.
We demonstrate that optical trapping of multiple silver nanoparticles is strongly influenced by plasmonic coupling of the nanoparticles. Employing dark-field Rayleigh scattering imaging and spectroscopy on multiple silver nanoparticles optically trapped in three dimensions, we experimentally investigate the time-evolution of the coupled plasmon resonance and its influence on the trapping stability. With time the coupling strengthens, which is observed as a gradual red shift of the coupled plasmon scattering. When the coupled plasmon becomes resonant with the trapping laser wavelength, the trap is destabilized and nanoparticles are released from the trap. Modeling of the trapping potential and its comparison to the plasmonic heating efficiency at various nanoparticle separation distances suggests a thermal mechanism of the trap destabilization. Our findings provide insight into the specificity of three-dimensional optical manipulation of plasmonic nanostructures suitable for field enhancement, for example for surface-enhanced Raman scattering.  相似文献   

19.
Surface plasmon modes supported by short-pitch silver gratings with different depths have been characterized by studying the reflectivity as a function of the angle of incidence and the incident wavelength (400–850?nm). Highly non-dispersive ‘flat’ surface plasmon-polariton bands were found corresponding to localized, within the grooves, radiative resonant modes. Experimental reflectivities were compared with model calculations and to help understand the character of each of the modes, the optical magnetic field distributions at the resonant frequencies were explored.  相似文献   

20.
Plasmonic nanostructures concentrate optical fields into nanoscale volumes, which is useful for plasmonic nanolasers, surface enhanced Raman spectroscopy and white-light generation. However, the short lifetimes of the emissive plasmons correspond to a rapid depletion of the plasmon energy, preventing further enhancement of local optical fields. Dark (subradiant) plasmons have longer lifetimes, but their resonant wavelengths cannot be tuned over a broad wavelength range without changing the overall geometry of the nanostructures. Also, fabrication of the nanostructures cannot be readily scaled because their complex shapes have subwavelength dimensions. Here, we report a new type of subradiant plasmon with a narrow (~5 nm) resonant linewidth that can be easily tuned by changing the height of large (>100 nm) gold nanoparticles arranged in a two-dimensional array. At resonance, strong coupling between out-of-plane nanoparticle dipolar moments suppresses radiative decay, trapping light in the plane of the array and strongly localizing optical fields on each nanoparticle. This new mechanism can open up applications for subradiant plasmons because height-controlled nanoparticle arrays can be manufactured over wafer-scale areas on a variety of substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号