首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-walled carbon nanotube (SWNT) films were prepared on interdigitated electrodes by airbrush technique, and their sensing properties to dimethyl methylphosphonate (DMMP) were studied. The SWNT films were characterized by field-emission scanning electron microscope. The response to different concentrations of DMMP vapors were investigated at room temperature. The results showed that the capacitance of airbrush SWNT sensor decreased rapidly in varying concentrations ranging from 12 to 60 mg/m3 (2.4–12 ppm). The capacitance sensitivity was about 12.5 % when exposed to 12 mg/m3 DMMP vapor. The capacitance sensitivity was higher when the initial capacitance and loss tangent were higher and the SWNT film was denser. It was found that the capacitance sensitivity was nearly 10 times to the resistance sensitivity. The airbrush SWNT sensor exhibited highly and fast capacitance response, good repeatability and selectivity for DMMP vapor.  相似文献   

2.
A new material-poly{methyl [3-(2-hydroxyl, 4,6-bistrifluoromethyl)phenyl]propylsiloxane} (PMTFMPS), which was sensitive to toxic organophosphate vapor, was synthesized via O-alkylation, claisen rearrange reaction and hydrosilylation reaction. The polymer was coated on quartz crystal microbalance (QCM) to investigate its gas sensitive properties to nerve agents’ simulant dimethyl methylphosphonate (DMMP) vapor, as well as other interfering vapors. It was found that QCM sensor responded linearly to DMMP vapor with a slope of 27 Hz/ppm in the 10–50 ppm range. The material was much more sensitive to DMMP than to other interfering vapors, thus high selectivity to DMMP was demonstrated. The influence of humidity on the sensor response was also examined. The results showed that the frequency shifts were about 60% when tested in 77% RH wet air than in dry N2. When compared with our previously studied unfluorinated phenol-modified siloxane PMPS, PMTFMPS exhibited sensitivity enhancement of 2.3 times and an increased resistance to humidity variations.  相似文献   

3.
Surface acoustic wave (SAW) vapor sensors with polymeric sorbent layers can respond to vapors on the basis of mass loading and modulus decreases of the polymer film. The modulus changes are associated with volume changes that occur as vapor is sorbed by the film. A factor based on the fractional free volume of the vapor as a liquid has been incorporated into a model for the contribution of swelling-induced modulus changes to observed SAW vapor sensor responses. In this model, it is not the entire volume added to the film by the vapor that contributes to the modulus effect; it is the fractional free volume associated with the vapor molecules that causes the modulus to decrease in a manner that is equivalent to free volume changes from thermal expansion. The amplification of the SAW vapor sensor response due to modulus effects that are predicted by this model has been compared to amplification factors determined by comparing the responses of polymer-coated SAW vapor sensors with the responses of similarly coated thickness shear mode (TSM) vapor sensors, the latter being gravimetric. Results for six to eight vapors on each of two polymers, poly(isobutylene) and poly(epichlorohydrin), were examined. The model predicts amplification factors of the order of about 1.5-3, and vapor-dependent variations in the amplification factors are related to the specific volume of the vapor as a liquid. The fractional free volume factor provides a physically meaningful addition to the model and is consistent with conventional polymer physics treatments of the effects of temperature and plasticization on polymer modulus.  相似文献   

4.
Surface acoustic wave (SAW) devices are presently receiving careful scrutiny for applications in chemical sensing as well as in polymer characterization. Gas monitors based on SAW sensors have the potential for miniaturization and high sensitivity to a wide variety of substances. Polymer characterization is applicable to such diverse fields as protective coating design and decontamination of polymers. To better understand the physical mechanisms behind SAW response, the effects of the elastic properties in comparison to the mass loading of polymer coatings on SAW substrates were investigated. A theoretical basis for the effects of vapor-induced swelling or of thermal expansion was established. Compressive tension and its effect on SAW frequencies were found to be simple to describe, if there is no film slippage or polymer flow. The response of quartz substrate SAW crystals coated with polycarbonate and polyimide (glassy polymers) upon exposure to toluene and methanol was measured. Practical problems as to film uniformity, thickness measurement, and environmental control necessary in such measurements are described. Contrary to recent reports in the literature, no significant elastic tightening effect was observed with these vapor/polymer pairs.  相似文献   

5.
We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) configured as oscillators using a two-port resonator 315, 433 and 915 MHz device. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic organic matrix was prepared by Langmuir–Blodgett technique with a different SWCNTs weight filler content onto SAW transducers as nanosensing interface for vapor detection, at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray diffraction, transmission and scanning electron microscopy, respectively. The sensing properties of SWCNTs nanocomposite LB films consisting of tangled nanotubules have been also investigated by using Quartz Crystal Microbalance 10 MHz AT-cut quartz resonators. The measured acoustic sensing characteristics indicate that the room-temperature SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, toluene) of the SWCNTs-in-CdA nanocomposite increases with the filler content of SWCNTs incorporated in the nanocomposite; also the SWCNTs-in-CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials with a linearity in the frequency change response for a given nanocomposite weight composition and a very low sub-ppm limit of detection.  相似文献   

6.
In this paper, we present a comparative study of GB and DMMP vapor detection using Love wave devices. Acoustic sensors are optimized versus the mass loading effect according to theoretical results, and a specific sensitive coating based on polysiloxane polymer is used to ensure selectivity. Experimental results allow us to compare the interactions between the coating and both gases. An estimation of the diffusion coefficient of each gas (GB and DMMP) was performed and we linked the dynamic of the responses with the sorption kinetics.  相似文献   

7.
A novel chemical-sensing technique to detect the nerve agent sarin stimulant dimethylmethylphosphonate (DMMP) is presented. This technique uses a combination of doped polypyrrole as an active chemical material coated on an optical fiber to form an intrinsic fiber-optic sensor. Sensitivity of up to 26 ppm of DMMP with response time of a few seconds is demonstrated. Influence of three different dopants, i.e., 1,5 naphthalene disulphonic acid, anthraquinone 2 sulphonic acid, and hydrochloric acid is investigated for sensor response and sensitivity. Two polymer processing techniques, i.e., in situ deposition and monomer vapor phase deposition is investigated for optimal polypyrrole morphology for DMMP sensitivity. The influence of substrate nature, i.e., hydrophilic and hydrophobic, on sensor sensitivity is studied. Organophosphate specific binding sites have been created in polypyrrole structure using Cu/sup 2+/ ions to enhance DMMP response. The selectivity issue is addressed by testing the sensor in the presence of other gases like ammonia, water vapor, and acetone which influence the electronic properties of polypyrrole.  相似文献   

8.
The solvatochromic dye Nile Red dispersed in selected hydrogen bond acidic polymer matrixes demonstrated strong fluorescence enhancement at the presence of dimethyl methylphosphonate (DMMP) vapors. Two hydrogen bond acidic polymers were examined as dye matrixes, one with fluorinated alcohol groups on a polystyrene backbone (PSFA) and the other with fluorinated bisphenol groups alternating with oligo(dimethylsiloxane) segments (BSP3). The combination of hydrogen bond acidic polymer (a strong sorbent for DMMP) with the solvatochromic dye led to initial depression of the dye fluorescence and a significant red shift in the absorbance and fluorescence spectra. DMMP sorption changed the dye environment and dramatically altered the fluorescence spectrum and intensity, resulting in a strong fluorescence enhancement. It is proposed that this fluorescence enhancement is due to the competition set up between the dye and the sorbed vapor for polymeric hydrogen-bonding sites. The highest responses were obtained with BSP3. DMMP detection has been demonstrated at sub-ppm DMMP concentrations, indicating very low detection limits compared to previous Nile Red/polymer matrix fluorescence vapor sensors. Nile Red/poly(methyl methacrylate) films prepared for comparisons exhibited substantially lower response to DMMP. Rational selection of polymers providing high sorption for DMMP and competition for hydrogen-bonding interactions with Nile Red yielded flourescent films with high sensitivity.  相似文献   

9.
A new kind of polymer-based sensor is described in which the experimental parameters controlling selectivity and sensitivity are decoupled. The sensor is based on a surface acoustic wave (SAW) gravimetric transducer modified with a high-surface-area, nanoporous alumina coating. A very thin ( approximately 40 nm) poly(dimethylsiloxane) (PDMS) coating resides atop the porous alumina structure. In this configuration, the total surface area of the nanoporous alumina coating controls the sensitivity of the device, while the chemical properties of the PDMS membrane control selectivity. In conventional polymer-based sensors, the polymer plays the dual role of controlling both selectivity (via the chemical composition of the coating) and sensitivity (via the volume of the film). In this paper, we show that PDMS acts as a chemically selective gate that absorbs polar and nonpolar VOCs but does not transport these analytes to the underlying pore volume. In contrast, water vapor is absorbed by the PDMS to a very minor extent but is easily transported through it to the underlying walls of the porous substructure. Specifically, there was little difference in the mass-loading response arising from polar and nonpolar VOCs dosed onto planar and nanoporous SAW devices modified with PDMS. In contrast, SAW devices having nanoporous coatings responded up to 24 times more selectively to water than planar sensors modified identically.  相似文献   

10.
A thin beam of wave usually diverges due to diffraction, which is a limitation of any device using such waves. However, a surface acoustic wave (SAW) on a sphere with an appropriate aperture does not diverge but is naturally collimated, realizing ultramultiple roundtrips along an equator of the sphere. This effect is caused by the balance between diffraction and focusing on a spherical surface, and it enables realization of high-performance ball SAW sensors. The advantage of ball SAW is most fully appreciated when applied to a very thin sensitive film for which the multiple-roundtrip enhances the sensitivity, but the attenuation loss is not very large. It is exemplified in a hydrogen gas sensor that realizes a wide sensing range of 10 ppm to 100% for the first time, and realizes relatively fast response time of 20 s without heating the sensitive film.  相似文献   

11.
The gas sensing properties of organic polypyrrole (PPS) film, deposited onto LiNbO(3) substrate by Langmuir-Blodgett (LB) technique, have been monitored by surface acoustic wave (SAW) delay lines and studied with respect to sensitivity, selectivity, response time, stability, repeatability, and aging. The SAW PPy elements demonstrate high sensitivity toward NH(3) gas with high selectivity against CH(4), CO, H(2), and O(2). The detectable threshold concentration has been estimated as 20 ppm NH(3) in air; the response time is in the 10s range, and the recovery time is about 15 min; the repeatability of the SAW response toward eight sequential NH(3) gas exposures is within 6%; the aging of the PPy film is within 4% over a month; and the effect of humidity on SAW NH(3) gas response is negligible for the typical conditions at room ambient air. Partially reversible SAW response recognizing NH(3) gas as one component of an interfering gases-mixture has been observed. Simultaneous chemoresponses of SAW phase and insertion loss have been performed in order to investigate the sensing mechanisms. By merging with electrical conductivity gas response, the dominant SAW sensing effects for NH(3 ) gas detection are defined as elastic loading.  相似文献   

12.
We have prepared SrTiO3/BaTiO3 multilayer film on alumina substrates by a sol-gel technique and investigated their response for sensing ethanol vapor. The surface morphology of the films were characterized by atomic force microscope (AFM) showing that the grain size of the films increase up to 40 nm as the annealing temperature increased to 1000 degrees C. The ethanol sensors based on SrTiO3/BaTiO3 thin films were fabricated by applying interdigitated gold electrodes by sputtering technique. The ethanol sensing characteristics of SrTiO3/BaTiO3 thin films were quantified by the change in resistance of the sensors when they were exposed to ethanol. The optimum operating tempearature of these sensors was found to be 350 degrees C. In addition, the film annealed at 1000 degrees C exhibited p-type gas sensing behavior with the best sensitivity of 30-100 for low ethanol concentration in the range of 100-1000 ppm.  相似文献   

13.
Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.  相似文献   

14.
This paper presents a unique perspective on enhancing the physicochemical mechanisms of two distinct highly sensitive nanostructured metal oxide micro hot plate gas sensors by utilizing an innovative multifrequency interrogation method. The two types of sensors evaluated here employ an identical silicon transducer geometry but with a different morphological structure of the sensitive film. While the first sensing film consists of self-ordered tungsten oxide nanodots, limiting the response kinetics of the sensor-chemical species pair only to the reaction phenomena occurring at the sensitive film surface, the second modality is a three-dimensional array of tungsten oxide nanotubes, which in turn involves both the diffusion and adsorption of the gas during its reaction kinetics with the sensitive film itself. By utilizing the proposed multifrequency interrogation methodology, we demonstrate that the optimal temperature modulation frequencies employed for the nanotubes-based sensors to selectively detect hydrogen, carbon monoxide, ethanol, and dimethyl methyl phosphonate (DMMP) are significantly higher than those utilized for the nanodot-based sensors. This finding helps understand better the amelioration in selectivity that temperature modulation of metal oxides brings about, and, most importantly, it sets the grounds for the nanoengineering of gas-sensitive films to better exploit their practical usage.  相似文献   

15.
Chemiresistor-based vapour sensors made from network films of single-walled carbon nanotube (SWNT) bundles on flexible plastic substrates (polyethylene terephthalate, PET) can be used to detect chemical warfare agent simulants for the nerve agents Sarin (diisopropyl methylphosphonate, DIMP) and Soman (dimethyl methylphosphonate, DMMP). Large, reproducible resistance changes (75-150%), are observed upon exposure to DIMP or DMMP vapours, and concentrations as low as 25?ppm can be detected. Robust sensor response to simulant vapours is observed even in the presence of large equilibrium concentrations of interferent vapours commonly found in battle-space environments, such as hexane, xylene and water (10?000?ppm each), suggesting that both DIMP and DMMP vapours are capable of selectively displacing other vapours from the walls of the SWNTs. Response to these interferent vapours can be effectively filtered out by using a 2?μm thick barrier film of the chemoselective polymer polyisobutylene (PIB) on the SWNT surface. These network films are composed of a 1-2?μm thick non-woven mesh of SWNT bundles (15-30?nm diameter), whose sensor response is qualitatively and quantitatively different from previous studies on individual SWNTs, or a network of individual SWNTs, suggesting that vapour sorption at interbundle sites could be playing an important role. This study also shows that the line patterning method used in device fabrication to obtain any desired pattern of films of SWNTs on flexible substrates can be used to rapidly screen simulants at high concentrations before developing more complicated sensor systems.  相似文献   

16.
Wei L  Shi D  Ye P  Dai Z  Chen H  Chen C  Wang J  Zhang L  Xu D  Wang Z  Zhang Y 《Nanotechnology》2011,22(42):425501
We developed a chemiresistive sensor based on doped and functionalized semiconducting single-walled carbon nanotube (SWNT) networks for ultrasensitive and rapid detection of dimethyl methylphosphonate (DMMP) (simulant of nerve agent sarin) vapor. The semiconducting SWNT network was deposited between interdigitated electrodes and modified by solid organic acid tetrafluorohydroquinone (TFQ). The TFQ molecules could not only selectively bind DMMP onto the sidewalls of SWNTs via the strong hydrogen bonding interaction, but also tailor the electronic properties of SWNTs via heavy hole doping. This synergetic effect significantly improved the sensitivity of the devices, and enabled the sensors to easily detect DMMP at 20 parts-per-trillion (ppt) concentration with a response time of less than 2 min, without the need for pre-concentration of the analytes. This sensitivity is about five orders of magnitude higher than that of the unmodified SWNT chemiresistor, and also significantly higher than that of the functionalized SWNT chemiresistors previously reported. Moreover, the SWNT-TFQ sensors could be recovered when DMMP is replaced with referencing gas. The SWNT-TFQ sensors also show excellent selectivity toward DMMP over some interfering organic vapors. The response mechanism, i.e. charge transfer and dedoping was investigated.  相似文献   

17.
Attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy is used to identify liquid and solid-phase chemicals. This research examines the feasibility of identifying vapor-phase chemicals using a field-portable ATR-FT-IR spectrometer (TravelIR) combined with solid-phase microextraction (SPME). Two nerve agent simulants, diisopropyl methylphosphonate (DIMP) and di-methyl methylphosphonate (DMMP), and three sorbent polymers were evaluated. Each polymer was deposited as a thin film on the instrument's sampling interface to partition and concentrate the simulants from air samples prepared in Tedlar bags. The lowest vapor concentrations identified were 50 ppb (v/v) (DIMP) and 250 ppb (v/v) (DMMP). The ATR-FT-IR instrument demonstrated a linear response at concentrations of 1 ppm (v/v) and below. Increasing the sample exposure time, the sample air velocity, and the film thickness was demonstrated to increase the amount of analyte extracted from the air sample. This research demonstrates that it is feasible to use a portable ATR-FT-IR spectrometer with SPME sampling to detect and identify vapor-phase chemicals.  相似文献   

18.
In this study, a chemoresistive sensor was fabricated by the chemical polymerization and coating of either polyaniline (PANI), poly[2-methoxy-5-(2-ethyloxy)-p-phenylenevinylene], or commercial poly(methyl methacrylate) on MWNTs. We investigated the resistance responsiveness of the multilayer samples to simulated chemical warfare agents, including dimethyl methyl phosphonate (DMMP) and dichloromethane (DCM), as well as to organic agents, such as chloroform, tetrahydrofuran, methyl-ethyl ketone, and xylene. The MWNTs–PANI film was characterized by SEM and FT-IR, and the resistivity values for the six solvents were measured at different temperatures. We observed that the MWNTs-PANI sensing film exhibited a high sensitivity, excellent selectivity, and good reproducibility to the detection of all of the aforementioned agent vapors. In addition, we used atomic force microscopy to demonstrate the MWNTs–PANI absorption of DMMP vapor, wherein the sensing film exhibited a swelling phenomenon, such that the film thickness increased from 0.8 to 1.3 μm. In addition, we used principal component analysis to evaluate the performance of the sensor in detecting DMMP, DCM, and the aforementioned organic agent vapors.  相似文献   

19.
Indium tin oxide (ITO) (In2O3 + 17% SnO2) thin films were grown on glass substrate by direct evaporation method. Two thick gold pads were deposited to take out contacts. The response of these films at different operating temperatures, when exposed to various volatile organic compounds (VOCs) such as methanol, ethanol, butanol, and acetone in the concentration range 200-2500 ppm was evaluated. Additionally, the effect of film thickness on the response charateristics of methanol and acetone was studied. The linearity and sensitivity of the sensors were measured. The ITO thin-film sensors showed a sensitivity of 0.256 ohms/ppm to acetone vapors, which was almost linear in the range 200-2500 ppm. In order to improve sensitivity and selectivity, a thin layer of various metal and metal oxides such as Cu and PbO was deposited on the sensor surface to work as catalytic layer and the effect on the performance of the sensor was studied. The response and recovery times of the sensor were determined for acetone vapors and were found to be 155 sec and 110 sec, respectively.  相似文献   

20.
Kim Y  Lee S  Choi HH  Noh JS  Lee W 《Nanotechnology》2010,21(49):495501
Single-walled carbon nanotube (SWNT) networks were used to detect hazardous dimethyl-methyl-phosphonate (DMMP) gas in real time, employing two different metals as electrodes. Random networks of SWNTs were simply obtained by drop-casting a SWNT-containing solution onto a surface-oxidized Si substrate. Although the electrical responses to DMMP at room temperature were reversible for both metals, the Pd-contacting SWNT network sensors exhibited a higher response and a shorter response time than those of the Au-contacting SWNT network sensors at the same DMMP concentration, due to the stronger interactions between the SWNTs and Pd surface atoms. In Pd-contacting SWNT network sensors, the response increased linearly with increasing DMMP concentration and reproducible response curves were obtained for DMMP levels as low as 1 ppm. These results indicate that SWNT networks in contact with Pd electrodes can function as good DMMP sensors at room temperature with scalable and fast response and excellent recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号