首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
支持向量机是基于统计学习理论的一种模式识别方法,近年来以其优良的特性引起了研究者的广泛关注,已经成为一个十分活跃的研究领域。本文系统介绍了支持向量机的理论及应用方法,讨论了支持向量机中核函数的选择问题。然后对二类SVM实现算法和多类SVM实现算法进行分析,总结其性能与优缺点,最后指出SVM中待解决的一些同题和日后的研究方向。  相似文献   

2.
黄永毅 《硅谷》2013,(12):34-35
针对标准支持向量机在处理不平衡数据问题的缺陷,提出一种解决方法,首先采用一种改进上采样方法(Over-sampling)—SMOTE来平衡正负样本的数目,达到缓解两类样本数目悬殊的目的。然后引入差异惩罚思想对两类样本进行不同程度的惩罚。实验表明,本文提出的SDPC-SVM分类算法在处理不平衡数据的分类问题上具有可行性与有效性。  相似文献   

3.
滚动轴承故障诊断是提高设备利用率、降低运行及维护成本关键。最小二乘支持向量回归机为有效的故障诊断方法,为解决其参数选取受限于主观经验问题,将萤火虫群算法用于惩罚系数C与核参数σ寻优,提出基于萤火虫群算法优化最小二乘支持向量回归机的滚动轴承故障诊断方法。实验结果表明,该方法能对滚动轴承故障位置及程度进行准确诊断,与常规最小二乘支持向量回归机、BP神经网络相比精度更高,由此验证该方法的可靠性。  相似文献   

4.
为支持向量回归机提供了一个新的光滑函数,即运用三次样条函数和复合函数的方法,得到一种新的光滑支持向量回归机——三次样条光滑支持向量回归机(TSSSVR).对该支持向量回归机的光滑函数进行了逼近性能和收敛性的分析,并说明该光滑函数比以往的光滑函数具有更高的逼近精度和收敛速度.  相似文献   

5.
统计学习理论作为机器学习一个分支,由于其优异的特性及应用前景受到越来越多的关注。支持向量机(SVM)衍生于统计学习理论,能够在最小化训练误差和模型复杂度之间找到最佳平衡点,是一种比较经典的机器学习方法。由于秉承了统计学习理论的主要思想(如结构风险最小化、VC维),支持向量机可以在有限样本下得到全局最优,从而避免局部最优问题。  相似文献   

6.
姚晓辉 《硅谷》2010,(19):151-151,61
通过运用非线性函数建立支持向量机的回归模型,使鲁棒性能运用于回归估计,并推出向量机优化的基本理论,给出一些新的优化问题,最后通过仿真实验进行验证,结果证实鲁棒支持向量机的非线性函数回归的可行性。  相似文献   

7.
赵小萌  张斌  程晓荣 《硅谷》2012,(1):102-102
统计学习理论(Statistical Learning Theory,SLT)是一种专门研究小样本情况下机器学习规律的理论,作为统计学习理论的VC维理论和结构风险最小化(Structure Risk Minimization,SRM)原则的具体实现算法支持向量机(support vector machinse,SVM),集优化、核(Kernel)、最佳推广能力等特点于一身,其出色的学习能力被广泛的关注并在各个领域广泛应用,系统介绍基于支持向量机的网络安全风险评估,给出其可行性、优越性及SVM评估模型,最后提出该研究发展方向与前景的预见。  相似文献   

8.
次序二叉树支持向量机多类故障诊断算法研究   总被引:4,自引:2,他引:2  
构建二叉树支持向量机时,如果随机地将分类器分布在二叉树的各个结点上,是不能充分发挥其性能的。考虑到样本的分布情况对分类器推广能力具有较大影响,提出一种次序二叉树支持向量机多类算法,采用样本分布半径和样本分布距离估算各个类别的样本在高维特征空间中的分布情况,把分布半径较大的类别或者分布距离较大的类别较早地分出来,并且在特征空间中给其划分较大的分类区域。转子多故障诊断实验表明,该算法的诊断速度快,故障识别率高,推广能力强,更加适合于实际故障诊断应用。  相似文献   

9.
由于中央空调系统的时滞性、时变性、非线性和大惰性等特性,使得当前采用的中央空调负荷预测算法精度并不高,本文在江阴某楼宇空调系统节能改造项目的基础上,从中央空调系统的组成和特性出发,提出了基于支持向量回归机(Support Vector Regression SVR)理论的中央空调负荷预测模型。对项目楼宇历史负荷数据进行分析,分别采用SVR负荷预测模型和BP神经网络负荷预测模型进行了训练和预测。预测结果表明:基于SVR负荷预测模型较BP神经网络负荷预测模型精度更高,具有较强的实用性和可行性。  相似文献   

10.
根据文本分类的特点,在对最小二乘支持向量机方法进行详细分析的基础上,创建了基于最小二乘支持向量机的多元文本分类器.实验表明,采用该文本分类器能够在保持较高分类精度和召回率的基础上,提高训练效率,具有一定的可行性.  相似文献   

11.
基于交叉验证SVM的网络入侵检测   总被引:1,自引:0,他引:1  
针对传统入侵检测系统漏报率和误报率高的问题,将支持向量机(SVM)应用于入侵检测中,提出了在SVM学习过程中引入交叉验证的方法,采用径向基函数(RBF)作为核,将训练集分成若干子集,每一子集使用其它子集训练得到的分类器进行测试,获得RBF的两个最佳参数后,将其应用于最终的分类器.实验结果表明,该方法能够有效检测入侵攻击,具有更高的检测率和更强的泛化能力,同时具有较低的误报率和漏报率,可以有效地运用于入侵检测系统中.  相似文献   

12.
为了在有限算法复杂度的基础上提高无线传感器网络的攻击检测率,提出了一种改进的支持向量机多类分类算法.该算法综合了稀疏型随机编码和Hadamard编码的特点,以汉明距离为评判依据,对节点采集的流量数据进行分类.结果表明,与单独的一对一、一对多及Hadamard算法相比,此改进型分类算法在五种攻击的正确率检测方面有较明显的优势,运算时间上比Hadamard算法减少了22%.  相似文献   

13.
行人再识别中的难点在于在不同摄像机中同一行人的图像差异较大,单一特征难以稳定地描述图像,而采用多种特征融合时无法准确分配权重。针对这一缺陷,本文提出了多核支持向量机多示例学习的行人再识别算法。首先提取行人在A、B摄像机下二张图片的分块HSV颜色特征和分块SIFT局部特征并构建词袋,将二者作为示例样本封装成包;其次对多核支持向量机模型进行了优化,采用高斯核和多项式核线性融合对包进行训练,并用多示例学习获得最优权重;最后本文算法在VIPe R标准数据集上进行了测试,识别准确率通过计算十次实验的平均准确度来获得,并用CMC曲线进行表示,同时也对样本的匹配结果进行排序。实验结果表明本文算法与多个优秀的算法相比,鲁棒性和识别准确度都获得了提高。  相似文献   

14.
介绍了滚控发动机推力信号测试过程中容易叠加高频大幅值振动的现象, 及其对自动数据处理带来的困难;讨论了常规数值平滑滤波算法解决该问题的局限性;基于同步获得的气动活门到位开关曲线, 设计了一种专用的推力还原算法, 把推力曲线分解为许多状态单一的时间段, 分别进行推力平均, 逼真地还原了推力曲线, 为计算机自动分割推力阶段、冲量积分等后续处理提供了更为接近实际的数据.  相似文献   

15.
本文利用最小二乘理论研究学习理论中的回归问题.其目的在于利用概率不等式与神经网络的逼近性质来分析回归学习算法的误差.结论表明,当回归函数满足一定的光滑性时,得到较为紧的上界且该上界与输入空间的维数无关.  相似文献   

16.
范彬  冯云松  杨丽  杨华 《光电工程》2007,34(8):20-24
为提高传统红外成像跟踪算法的性能,克服相关跟踪对"图像灰度一致性"的要求,在分析光流方程和支持向量机基本理论的基础上,提出一种由光流方程引出的基于支持向量机的成像跟踪算法.以机动车的红外图像序列为研究对象,该算法利用支持向量机的分类值替代方差和误差函数,将每帧中分类值最大的位置看作当前帧中目标的位置,从而实现了对目标的跟踪.该算法不仅不要求满足"图像灰度一致性",而且有效地减少了跟踪的累积误差.研究结果表明,与传统相关跟踪算法相比,本文提出的跟踪算法的精度、稳定度和鲁棒性都有所提高.  相似文献   

17.
何桢  崔庆安 《工业工程》2006,9(5):6-10,27
当影响因素和响应输出的关系较为复杂时,应用传统响应曲面法(RSM)、非参数响应曲面法(NPRSM)和人工神经网络(ANN)难以拟合真实的响应曲面,不仅需要大的样本量,而且泛化风险大,不易达到全局最优.将RSM归结为可有限制地主动获取样本的小样本机器学习问题,提出了一种基于支持向量机(SVM)的RSM.以大间隔网格取样,利用SVM拟合过程,对拟合方程寻优确定极值大致区域,再逐步缩小间隔求精.算例研究表明,该方法的拟合与泛化性能优于NPRSM和基于ANN的RSM,能在小样本条件下建立全局性数值模型,寻优可以得到多个极值.  相似文献   

18.
针对基于对象的图像检索问题,利用模糊支持向量机(FSVM)提出了一种新的多示例学习算法——FSVM-MIL算法.在标准的多示例学习问题中,一个包被标为正包,则它至少包含一个示例是正的,否则被标为负包.FSVM-MIL算法将图像当作包,分割后的区域当作包中的示例,若图像包含有感兴趣对象,则对应的包标为正,否则标为负,因为正包中的示例不全是正的,概念标号存在模糊性,本文利用多样性密度方法寻找概念点,根据noisy-or概率模型定义了模糊隶属度函数,为正包中的示例赋予不同的模糊因子,用FSVM求解多示例学习问题.在SIVAL图像集进行对比实验,结果表明FSVM-MIL算法是有效的且性能不亚于其它同类方法.  相似文献   

19.
直接根据多联机系统能耗数据的变化来判断导致能耗大幅波动的因素是很困难的。本文提出一种有效的可用于多联机系统的能耗评估与诊断方法:将支持向量回归(SVR)算法与单类支持向量机(OCSVM)算法相结合,首先通过提取系统能耗数据集特征,去除非稳态数据,根据提取的特征变量与系统能耗建立SVR模型,预测多联机系统能耗;然后将实际能耗值与预测能耗值之差和之比分别标准化,作为输入变量,建立单类支持向量机(OCSVM)模型进行样本判别,确定是否为导致系统能耗异常的原因,以此评估诊断多联机系统能耗情况。本文基于多联机能耗正常的数据集构建了能耗评估与诊断模型,并用多联机系统能耗异常数据集验证了模型的可靠性。结果表明:基于SVR-OCSVM模型的能耗评估与诊断模型具有较高的准确度,基本能达到70%以上。  相似文献   

20.
基于粗糙集和支持向量机理论的物流需求预测研究   总被引:1,自引:0,他引:1  
选择合适的预测模型来预测物流需求,对升级和优化物流产业具有重要的战略意义。常见的物流预测方法有:增长率法、移动平均法、时间序列法等,由于实际的物流预测数据常常具有多指标、非线性、小样本的特点,并且数据中存在冗余指标(噪声),导致在实际应用中,大多数预测方法的预测精度不高,难以保证有效性。针对这类物流预测问题,本文根据粗糙集属性约简中基于差别矩阵的算法,剔除冗余指标,基于约简的属性,改进了单一的SVM预测模型,并用遗传算法优化了SVM模型的输入参数,获得了较高的预测精度。本文给出了该方法的具体步骤,并用实际数据预测了广东省的货运总量,验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号