首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
高海  韩洋 《包装学报》2018,10(5):57-64
针对环境迁移、目标被遮挡或姿态变化较大时传统粒子滤波算法的鲁棒性不强的问题,提出一种改进的粒子滤波目标跟踪算法。建立目标模型时,将目标的HSV颜色特征和Uniform LBP纹理特征进行加权融合;粒子重采样过程中,采用加权随机采样方法,将粒子权值作为重采样的影响因子而非决定因子,以提升粒子多样性,降低粒子衰退对目标跟踪的影响;目标被干扰时,采用卡尔曼滤波对目标位置进行偏移校正,以获取目标正确位置;最后采用模板更新策略对目标模板进行实时更新。实验结果表明:相较于传统粒子滤波算法和CMT算法,本文算法对复杂环境中目标被遮挡和姿态变化的情况下都具有较好的鲁棒性。  相似文献   

2.
高翔 《硅谷》2011,(9):193-194
所做的工作是利用粒子滤波理论解决目标跟踪所面临的技术问题。首先介绍粒子滤波中的两种重要算法:贝叶斯理论和蒙特卡罗方法,接着在此基础上详细阐述基于粒子滤波的目标跟踪算法。  相似文献   

3.
一类基于信息融合的粒子滤波跟踪算法   总被引:2,自引:3,他引:2  
本文提出了一种基于图像多特征信息融合的粒子滤波跟踪算法.该算法利用颜色柱状图描述运动目标颜色分布信息,帧间差的梯度图像描述目标运动信息,并在柱状图框架下给出了运动目标颜色和运动似然模型,保证了颜色和运动似然模型在尺度上的统一.由于图像多特征提供了运动目标多方面的测量信息,从而提高了算法的可靠性.试验表明该算法在使用相同粒子数目的情况下较采用单一颜色特征的粒子滤波跟踪算法效果好.  相似文献   

4.
基于遗传算法的粒子滤波跟踪算法   总被引:1,自引:1,他引:0  
针对粒子滤波跟踪算法中粒子多样性退化问题,将改进的遗传算法应用到粒子重采样中,改善了样本的多样性.在改进的遗传算法中,使用了多项式重采样进行优选复制;以特定区间的随机数做交换率进行样本交叉繁殖;使用了马尔可夫链蒙特卡罗移动加高斯白噪声做样本变异繁殖并使用快速MH 抽样算法选取样本.改进后的粒子滤波跟踪算法不但保持了较高的运算效率,而且还较好地提高了跟踪的稳定性.试验表明,改进后的粒子滤波跟踪算法目标跟踪更加稳定,目标定位更加准确.  相似文献   

5.
多传感器多目标粒子滤波算法   总被引:3,自引:0,他引:3  
为了能够有效解决非线性、非高斯环境中多传感器多目标跟踪问题,提出了一种基于粒子滤波的多传感器联合概率数据互联粒子滤波算法(MJPDAP)。该算法应用广义S-D分配的规则对每个传感器送来的观测数据进行排列组合以形成等效量测点,并计算所有等效量测点的联合似然函数。在此基础上,结合联合概率数据互联(JPDA)的思想计算各个粒子权值,以获得最终的跟踪结果。仿真结果表明,与单传感器联合概率数据互联粒子滤波算法(SJPDAP)相比,该算法位置跟踪精度能提高20m左右。  相似文献   

6.
基于遗传进化策略的粒子滤波视频目标跟踪   总被引:1,自引:0,他引:1  
粒子退化问题是影响基于粒子滤波视觉跟踪性能的一个重要因素,为克服这种缺陷,本文将遗传进化策略引入粒子滤波跟踪算法,利用遗传算法的选择策略,根据预定的似然阈值迭代选择每代粒子中次优个体,然后对未选中的粒子实施交叉、变异操作以获得粒子的多样性,从而有效解决了粒子的退化问题.另外,针对跟踪中目标表观变化的问题,本文提出的跟踪算法采用了多模板自适应更新技术以确保跟踪的准确性.实验结果表明,本文提出的跟踪算法能有效地跟踪室内运动目标,并对光照变化、目标姿态变化具有良好的鲁棒性.  相似文献   

7.
在复杂场景下,传统的粒子滤波跟踪算法较难定位目标.针对此问题,提出了一种基于在线特征选择的粒子滤波跟踪算法.该算法首先在线、自适应地通过Fisher判别准则,从16个不同的颜色特征空间中选择最能区分目标及其邻近背景的1个最佳特征空间,然后在这个最佳特征空间中用基于统计直方图的粒子滤波算法跟踪目标.试验结果表明,该算法鲁棒性和准确性较好,在光照变化.目标自身发生形变和遮挡情况下能够准确地对目标进行跟踪.  相似文献   

8.
空间光电小目标信号能量弱,若目标运动参数和亮度信息不足,在低信噪比的条件下,将难以实现对小目标的检测与跟踪.本文主要利用粒子滤波在信号处理上的特点,对其在小目标跟踪中的应用展开研究.首先分析了粒子滤波在光电小目标跟踪中的基本理论,并针对目标亮度未知的情况,给出一种通过点扩展函数来构造目标函数的方法,对粒子权重进行更新....  相似文献   

9.
石洋  胡长青  崔杰 《声学技术》2019,38(4):370-375
基于前视声呐图像序列,研究并实现了经免疫算法优化的粒子滤波水下目标跟踪。声呐图像分割成二值图后,提取目标的区域形状特征以构建观测模型,设计目标模板自适应更新方法;将免疫算法的克隆与变异思想引入到粒子滤波中以解决粒子退化问题。对两组水下运动物体的跟踪实验表明,即使目标存在一定形变与干扰,文中的免疫粒子滤波算法仍能以较高的精度跟踪到目标真实运动轨迹;相比于传统粒子滤波算法,稳定性也更强。  相似文献   

10.
针对复杂场景中多目标跟踪问题,本文给出了目标的出现与消失、遮挡等模型描述,将其统一到粒子滤波的框架下,提出了一种可以处理目标数可变的多目标跟踪算法.对场景中的目标数建立马尔科夫模型,采用转移概率矩阵描述跟踪过程中目标出现,消失的情况;在状态表示中增加辅助变量,明确目标之间可能的遮挡;采用目标空间直方图建立基于唯一性原则的观测似然函数,通过后验概率分布估计目标数及目标状态.实验结果表明,本文算法能有效地处理跟踪过程中的目标数变化、目标遮挡等问题,实现多目标的正确跟踪.  相似文献   

11.
基于贝叶斯滤波的目标跟踪原理,介绍了扩展卡尔曼滤波(Extended Kalman Filter,EKF)和粒子滤波(ParticleFilter,PF)的基本思想和算法实现步骤。在非线性环境下对比分析了EKF算法和PF算法的估计精度,并给出两种方法的适用条件。EKF算法采用Taylor展开的线性变换来近似非线性模型,而PF算法采用一些带有权值的随机样本来表示所需要的后验概率密度。仿真结果表明,在强非线性非高斯环境下,PF算法的跟踪性能远优于EKF算法,当系统非线性强度不大时,EKF算法和PF算法的估计精度相差不大,但PF算法计算复杂,跟踪时间长,实时性差。  相似文献   

12.
杂波环境下的机动目标跟踪问题具有非线性、非高斯、不完全观测的特点,其难点在于观测值与目标的对应关系及每一时刻的运动模式均呈现高度不确定性。文中将多模型理论和辅助粒子滤波算法相结合,提出了一种新的杂波环境下机动目标跟踪算法——多模型辅助粒子滤波算法(MMAPF)。仿真结果表明,该算法与传统的交互多模型——扩展卡尔曼滤波算法、辅助粒子滤波算法相比,在相同的情况下,具有更高的滤波精度和较好总体性能。  相似文献   

13.
为了降低无线传感器网络在目标跟踪过程中的网络能耗,提出了一种时间异步条件下的分布式目标跟踪方法.首先,依据节点到目标的距离进行动态成簇,以跟踪簇为时间的计算单元,由簇头完成簇内跟踪时间计算及簇间贯序传递,然后引入并行粒子滤波(PPF)算法将粒子集分为多个子集,在子节点处并行采样、计算权重和重采样,最后,簇头节点收集各子节点上传的结果并完成目标的局部状态估计.仿真结果表明,PPF算法具有较好的跟踪精度,且相比于集中式粒子滤波(CPF)算法,可降低约38%的通信量.  相似文献   

14.
针对传统粒子滤波的建议分布没有利用到当前观测信息的不足,本文提出了一种基于运动检测以改进建议分布的粒子滤波跟踪方法.该方法利用系统的状态转移密度分布,结合目标当前时刻的运动信息共同决定目标的先验分布.首先从一阶自回归的状态转移模型中生成部分粒子,然后采用单高斯背景建模进行局部运动检测,在检测到的运动区域中采样其余粒子,由此得到粒子的先验分布.用该方法分别对动态背景和存在完全遮挡情况下的运动目标进行跟踪,实验结果表明该方法有较高的跟踪精度和较强的稳定性.  相似文献   

15.
图像序列中的运动目标在跟踪过程中容易受到复杂环境以及严重遮挡所影响。针对该问题,提出一种基于全局信息和局部信息的混合粒子滤波算法。新算法在传统粒子滤波的基础上引入了多子块纹理直方图,它包含了目标的局部空间信息,使得跟踪算法的鲁棒性有所提高;根据目标受遮挡的程度自适应调节全局和局部信息对目标定位的贡献,在一定程度上提高了算法的抗遮挡能力和适应能力,实验结果表明该算法在目标处于部分遮挡和严重遮挡时能够达到比较理想的跟踪效果。  相似文献   

16.
卡尔曼滤波器在光电经纬仪中的应用   总被引:4,自引:2,他引:4  
为了解决光电经纬仪电视跟踪系统脱靶量滞后对控制系统跟踪精度及稳定性的影响,将预测滤波技术应用到光电跟踪系统中,提出了极坐标下卡尔曼滤波算法,目标模型采用等速运动并附有时间相关的随机加速度,增加了延时补偿。仿真结果表明,跟踪误差减小,当跟踪目标从视场消失时,控制系统按照预测的目标信息跟踪。  相似文献   

17.
针对光电目标跟踪问题中纯角度跟踪的特点,提出了纯角度目标的机动自适应跟踪算法.该算法采用机动目标“当前”统计模型描述目标的运动特性,根据强跟踪滤波器的思想通过实时检测滤波器的残差信息确定目标的机动变化情况,进而调整“当前”统计模型中表征目标机动特性的参数(机动频率和随机加速度分布的极值),使得运动模型更加符合目标的机动...  相似文献   

18.
针对雷达目标观测和处理在不同的坐标系下完成,本文提出了联合滤波算法来跟踪机动目标。该算法以卡尔曼滤波器为基础,直角坐标系下和极坐标系下的算法相联合,不仅克服了两种坐标系下滤波算法的不足,而且对机动目标有很好的跟踪效果。仿真实验结果表明了该算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号