共查询到18条相似文献,搜索用时 46 毫秒
1.
针对环境迁移、目标被遮挡或姿态变化较大时传统粒子滤波算法的鲁棒性不强的问题,提出一种改进的粒子滤波目标跟踪算法。建立目标模型时,将目标的HSV颜色特征和Uniform LBP纹理特征进行加权融合;粒子重采样过程中,采用加权随机采样方法,将粒子权值作为重采样的影响因子而非决定因子,以提升粒子多样性,降低粒子衰退对目标跟踪的影响;目标被干扰时,采用卡尔曼滤波对目标位置进行偏移校正,以获取目标正确位置;最后采用模板更新策略对目标模板进行实时更新。实验结果表明:相较于传统粒子滤波算法和CMT算法,本文算法对复杂环境中目标被遮挡和姿态变化的情况下都具有较好的鲁棒性。 相似文献
2.
所做的工作是利用粒子滤波理论解决目标跟踪所面临的技术问题。首先介绍粒子滤波中的两种重要算法:贝叶斯理论和蒙特卡罗方法,接着在此基础上详细阐述基于粒子滤波的目标跟踪算法。 相似文献
3.
一类基于信息融合的粒子滤波跟踪算法 总被引:2,自引:3,他引:2
本文提出了一种基于图像多特征信息融合的粒子滤波跟踪算法.该算法利用颜色柱状图描述运动目标颜色分布信息,帧间差的梯度图像描述目标运动信息,并在柱状图框架下给出了运动目标颜色和运动似然模型,保证了颜色和运动似然模型在尺度上的统一.由于图像多特征提供了运动目标多方面的测量信息,从而提高了算法的可靠性.试验表明该算法在使用相同粒子数目的情况下较采用单一颜色特征的粒子滤波跟踪算法效果好. 相似文献
4.
5.
6.
基于遗传进化策略的粒子滤波视频目标跟踪 总被引:1,自引:0,他引:1
粒子退化问题是影响基于粒子滤波视觉跟踪性能的一个重要因素,为克服这种缺陷,本文将遗传进化策略引入粒子滤波跟踪算法,利用遗传算法的选择策略,根据预定的似然阈值迭代选择每代粒子中次优个体,然后对未选中的粒子实施交叉、变异操作以获得粒子的多样性,从而有效解决了粒子的退化问题.另外,针对跟踪中目标表观变化的问题,本文提出的跟踪算法采用了多模板自适应更新技术以确保跟踪的准确性.实验结果表明,本文提出的跟踪算法能有效地跟踪室内运动目标,并对光照变化、目标姿态变化具有良好的鲁棒性. 相似文献
7.
8.
9.
10.
针对复杂场景中多目标跟踪问题,本文给出了目标的出现与消失、遮挡等模型描述,将其统一到粒子滤波的框架下,提出了一种可以处理目标数可变的多目标跟踪算法.对场景中的目标数建立马尔科夫模型,采用转移概率矩阵描述跟踪过程中目标出现,消失的情况;在状态表示中增加辅助变量,明确目标之间可能的遮挡;采用目标空间直方图建立基于唯一性原则的观测似然函数,通过后验概率分布估计目标数及目标状态.实验结果表明,本文算法能有效地处理跟踪过程中的目标数变化、目标遮挡等问题,实现多目标的正确跟踪. 相似文献
11.
基于贝叶斯滤波的目标跟踪原理,介绍了扩展卡尔曼滤波(Extended Kalman Filter,EKF)和粒子滤波(ParticleFilter,PF)的基本思想和算法实现步骤。在非线性环境下对比分析了EKF算法和PF算法的估计精度,并给出两种方法的适用条件。EKF算法采用Taylor展开的线性变换来近似非线性模型,而PF算法采用一些带有权值的随机样本来表示所需要的后验概率密度。仿真结果表明,在强非线性非高斯环境下,PF算法的跟踪性能远优于EKF算法,当系统非线性强度不大时,EKF算法和PF算法的估计精度相差不大,但PF算法计算复杂,跟踪时间长,实时性差。 相似文献
12.
杂波环境下的机动目标跟踪问题具有非线性、非高斯、不完全观测的特点,其难点在于观测值与目标的对应关系及每一时刻的运动模式均呈现高度不确定性。文中将多模型理论和辅助粒子滤波算法相结合,提出了一种新的杂波环境下机动目标跟踪算法——多模型辅助粒子滤波算法(MMAPF)。仿真结果表明,该算法与传统的交互多模型——扩展卡尔曼滤波算法、辅助粒子滤波算法相比,在相同的情况下,具有更高的滤波精度和较好总体性能。 相似文献
13.
14.
15.
16.
17.