首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
Raman spectra of single-walled carbon nanotubes (SWNTs) in aqueous solutions with sodium dodecylsulfate (SDS) or fragmented single-stranded DNA (ss-DNA) and films obtained from these solutions have been studied. Scanning electron microscope (SEM) film study shows that micelles formed by SDS molecules around SWNT in solution do not keep individual nanotubes from sticking together in bundles during drying out the film. DNA wrapped around SWNT precludes the full nanotubes sticking in the film that facilitates the following splitting of these bundles.  相似文献   

2.
Photo-induced conductivity changes in n-doped poly(3-octylthiophene) (P3OT)/single-walled carbon nanotube (SWNT) composites have been examined. When exposed simultaneously to ultraviolet (UV) light and oxygen, carbon nanotubes exhibit photo-induced oxidation. An analysis of n-doped P3OT/SWNT composite exposed to oxygen/UV shows that conductivity increases and that charge carrier mobility is governed by the formation of a charge transfer complex. Possible sites of oxygen photoadsorption and its implications on the observed electrical properties of nanocomposite are considered.  相似文献   

3.
Density functional theory (DFT) and tight binding (TB) models have been used to study systems containing single-walled carbon nanotubes (SWNTs) and metal clusters that are of relevance to SWNT growth and regrowth. In particular, TB-based Monte Carlo (TBMC) simulations at 1000 or 1500 K show that Ni atoms that are initially on the surface of the SWNT or that are clustered near the SWNT end diffuse to the nanotube end so that virtually none of the Ni atoms are located inside the nanotube. This occurs, in part, due to the lowering of the Ni atom energies when they retract from the SWNT to the interior of the cluster. Aggregation of the atoms at the SWNT end does not change the chirality within the simulation time, which supports the application of SWNT regrowth (seeded growth) as a potential route for chirality-controlled SWNT production. DFT-based geometry optimisation and direct dynamics at 2000 K show that Cr and Mo atoms in Cr5Co50 and Mo5Co50 clusters prefer to be distributed in the interior of the clusters. Extension of these calculations should deepen our understanding of the role of the various alloy components in SWNT growth.   相似文献   

4.
Direct growth of chirality‐controlled single‐walled carbon nanotubes (SWNTs) with metal catalyst free strategy, like cloning or epitaxial growth, has suffered from the low efficiency. The underlying problem is the activation of seed edge. Here an unexpectedly efficient microwave‐assisted pathway to regenerate SWNTs from carbon fragments on SiO2/Si substrate is demonstrated via Raman spectroscopy and atomic force microscope (AFM) characterization. In this attempt, microwave irradiation provides fast heating to remove polar groups bonded to carbon nanotubes and reduce the spontaneous closure of tubes’ open ends. The survived SWNT and carbon fragments connected to it after plasma treatment are simply microwaved and then they serve as the template for regeneration. Scanning electron microscope and AFM characterizations indicate that the efficiency of the regeneration can reach 100%. And the regenerated SWNT has been proved without any change in chirality compared to the original SWNT. Electrical measurements on regenerated carbon nanotube films indicate 1 and 2 times increase in on/off ratio and on‐state current respectively than original carbon nanotube films obtained from solution‐phase separation, confirming the improvement of SWNT's quality. The microwave‐assisted regeneration is found to be highly effective and would be applied to improve the cloning efficiency of carbon nanotubes potentially.  相似文献   

5.
Polyethylene crystallization under shear has been studied in the presence of single-wall, few-wall, and multiwall carbon nanotubes (SWNT, FWNT, and MWNT). Polyethylene crystal d-spacings for (110) and (200) planes in polyethylene/carbon nanotubes (CNT) are smaller than in the control polyethylene without CNT and the polymer chain is oriented along the CNT axis. The single-wall carbon nanotube templated polyethylene crystals do not redissolve in boiling xylenes; instead, the chain morphology transforms to an amorphous conformation but remains oriented along the nanotube axis. SWNT crystal peaks were also observed in polyethylene/SWNT fibers.  相似文献   

6.
Application under mild conditions of a one-pot reductive-oxidative synthetic protocol to single-walled carbon nanotubes (SWNT) affords water-soluble oxygenated products that have been characterised by mean of XPS, solution 1H-NMR, UV-VIS-NIR, vibrational FTIR and Raman, SEM-energy dispersive x-ray (EDX), XRD, and ESI-MS techniques. Different oxygenated functionalities are evicted to be covalently bonded to carbon nanotubes frameworks, due to electrophilic insertion of O2 upon reduced carbon structures. The pH-dependent behaviour in water solution and the observed partial fragmentation of oxidised nanotubes, that can contribute in enhancing water solubility by shortening structures, are discussed. Prolonged heating of the material affords a higher graphitisation index of the functionalised carbonaceous water-soluble frameworks, and possible chemical paths for the partial recovering of pristine carbon nanostructures are reported. The achieved hydrophily due to polar oxygen moieties insertions on nanostructures provides a remarkable unprecedented water solubility for these carbon substrates without the attachment of large polar appendages.  相似文献   

7.
Isolation of single‐walled carbon nanotubes (SWNTs) with specific chirality and diameters is critical for achieving optimum performance of SWNTs in various applications. A water‐soluble π‐conjugated polymer, poly[(m‐phenyleneethynylene)‐alt‐(p‐phenyleneethynylene)], 3 , is found to exhibit high selectivity in dispersing SWNT (6,5). The polymer's ability to sort out SWNT (6,5) appears to be related to the carbon–carbon triple bond, whose free rotation allows a unique assembly of chromophores in a helical conformation. The observation is consistently supported by fluorescence, Raman, and UV‐vis‐NIR absorption spectra. The intriguing selectivity of 3 to SWNT (6,5), however, is not observed for the vinylene analogue polymer 1 , showing that the carbon–carbon triple bond could play a unique role in sorting out a specific SWNT. The observed selectivity from 3 could be attributed to a combination of the helical cavity size restrain and electronic interaction associated with the local chromophore arrangement. This strategy could be expanded for efficient SWNT sorting when the helical conformation is further finely tuned.  相似文献   

8.
Highly pure single-walled carbon nanotubes (SWNT) were synthesized by alcohol catalytic chemical vapor deposition on silicon substrates partially covered by a thin layer of TiN. The TiN coating selectively prevented the growth of carbon nanotubes. Field emission scanning electron microscopy and Raman spectroscopy revealed the formation of high purity vertically aligned SWNT in the Si region. X-ray Photoelectron Spectroscopy and Atomic Force Microscopy indicated that Co nanoparticles are present on the Si regions, and not on the TiN regions. This clearly explains the obtained experimental results: the SWNT only grow where the Co is presented as nanoparticles, i.e. on the Si regions.  相似文献   

9.
The latest process for producing large quantities of single-walled carbon nanotubes (SWNTs) to emerge from the Rice University, dubbed HiPco, is living up to its promise. The current production rates approach 450 mg/h (or 10 g/day), and nanotubes typically have no more than 7 mol % of iron impurities. Second-generation HiPco apparatus can run continuously for 7-10 days at a time. In the HiPco process nanotubes grow in high-pressure, high-temperature flowing CO on catalytic clusters of iron. Catalyst is formed in situ by thermal decomposition of iron pentacarbonyl, which is delivered intact within a cold CO flow and then rapidly mixed with hot CO in the reaction zone. Upon heating, the Fe(CO)5 decomposes into atoms that condense into larger clusters. SWNTs nucleate and grow on these particles in the gas phase via CO disproportionation: CO + CO --> CO2 + C (SWNT), catalyzed by the Fe surface. The concentration of CO2 produced in this reaction is equal to that of carbon and can therefore serve as a useful real-time feedback parameter. It was used to study and optimize SWNT production as a function of temperature, pressure, and Fe(CO)5 concentration. The results of the parametric study are in agreement with current understanding of the nanotube formation mechanism.  相似文献   

10.
We report the covalent functionalization of single-walled carbon nanotubes (SWNTs) with biotin. The synthesized functionalized SWNT materials were fully characterized by FTIR and thermogravimetric analysis. These characterization techniques provided valuable information concerning the nature of the obtained SWNT materials as well as the efficiency of the employed synthetic route towards SWNT covalent functionalization with biotin.  相似文献   

11.
Carbon nanotubes including single wall and multi wall carbon nanotubes (SWNT and MWNT) are attractive nanomaterials with great promise in industrial and medical applications. However, little is known about the role of p21 and hus1 gene in the toxic response of SWNT and MWNT to mammalian cells. The aim of this study is to investigate the role of the p21 and hus1 genes in the toxicity of carbon nanotubes. Comparison of micronucleus fraction between the wild type and p21 -/- , hus1 +/+ mouse embryo fibroblast (MEF) cells was performed experimentally. Our results show that the yield of the micronucleus ratio in p21 gene knock-out MEF cells is lower than that in the wild type counterpart, indicating that p21 may play as anti-apoptosis factor during the signal transduction of DNA damage caused by carbon nanotubes in mammalian cells.  相似文献   

12.
New polyaniline/nanotube (PANI/NT) composites have been synthesized by “in situ” polymerization processes using both multi-wall carbon nanotubes (MWNTs) and single-wall carbon nanotubes (SWNTs) in concentrations ranging from 2 to 50 wt.%. Although no structural changes are observed using MWNTs above a concentration of 20 wt.%, the in situ synthesis results in electronic interactions between nanotubes and the quinoid ring of PANI leading to enhanced electronic properties and thus to the formation of a genuine PANI/MWNT composite material. On the other hand, using SWNTs favors the formation of inhomogeneous mixtures rather than of a homogeneous composite materials, independent of the SWNT concentration. X-ray diffraction, Raman and transport measurements show the different behavior of both classes of nanotubes in PANI/NT materials. The difficulties in the formation of a true PANI/SWNT composite are related to the far more complex structure of the SWNT material itself, i.e. to the presence of entangled bundles of SWNTs, amorphous carbon and even catalytic metal particles.  相似文献   

13.
We have prepared nylon 6,10 nanocomposites using functionalized single wall carbon nanotubes and our interfacial in situ polycondensation method. The specific functional groups -(CH2)nCOCl [n = 4 and 9] on the sidewalls of SWNT were designed to covalently link nanotubes to the nylon matrix via alkyl segments. The composites with functionalized SWNT show significant improvements in tensile modulus, strength, and toughness relative to nylon and nylon modified with non-functionalized SWNT. The alkyl linkages at the SWNT/nylon 6,10 interface contribute significantly to improving the toughness of the composites.  相似文献   

14.
We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.  相似文献   

15.
Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.  相似文献   

16.
Carbon single-wall nanotubes (SWNTs) have highly unique electronic, mechanical and adsorption properties, making them interesting for a variety of applications. Raman spectroscopy has been demonstrated to be one of the most important methods for characterizing SWNTs. For example, Raman spectroscopy may be employed to differentiate between metallic and semi-conducting nanotubes, and may also be employed to determine SWNT diameters and even the nanotube chirality. Single-wall carbon nanotubes are generated in a variety of ways, including arc-discharge, laser vaporization and various chemical vapor deposition (CVD) techniques. In all of these methods, a metal catalyst must be employed to observe SWNT formation. Also, all of the current synthesis techniques generate various non-nanotube carbon impurities, including amorphous carbon, fullerenes, multi-wall nanotubes (MWNTs) and nano-crystalline graphite, as well as larger micro-sized particles of graphite. For any of the potential nanotube applications to be realized, it is, therefore, necessary that purification techniques resulting in the recovery of predominantly SWNTs at high-yields be developed. It is, of course, equally important that a method for determining nanotube wt.% purity levels be developed and standardized. Moreover, a rapid method for qualitatively measuring nanotube purity could facilitate many laboratory research efforts. This review article discusses the application of Raman spectroscopy to rapidly determine if large quantities of carbon impurities are present in nanotube materials. Raman spectra of crude SWNT materials reveal tangential bands between 1500-1600 cm(-1), as well as a broad band at approximately 1350 cm(-1), attributed to a convolution of the disorder-induced band (D-band) of carbon impurities and the D-band of the SWNTs themselves. Since the full-width-at-half-maximum (FWHM) intensity of the various carbon impurity D-bands is generally much broader than that of the nanotube D-band, an indication of the SWNT purity level may be obtained by simply examining the line-width of the D-band. We also briefly discuss the effect of nanotube bundling on SWNT Raman spectra. Finally, sections on employing Raman spectroscopy, and Raman spectroscopy coupled with additional techniques, to identify the separation and possible isolation of a specific nanotube within purified SWNT materials is provided. Every SWNT can be considered to be a unique molecule, with different physical properties, depending on its (n, m) indices. The production of phase-pure (n, m) SWNTs may be essential for some nanotube applications.  相似文献   

17.
Continued growth is a way of growing nanotubes targeted to produce continuous and chirality-controlled single-walled carbon nanotube (SWNT) materials. This growth method strongly depends on efficient preparation of open-ended SWNT substrates. Nanoscopically flat open-ended SWNT substrates have been prepared by cutting the SWNT spun fiber with a focused ion beam cutting technique and followed by etching schemes for cleaning amorphous carbon and opening the ends of the SWNTs. The open ends were effectively characterized through selective etch back of open SWNT ends by carbon dioxide gas at 950 degrees C. High density continued growth was demonstrated from these nanoscopically flat open-ended substrates.  相似文献   

18.
Density functional theory has been performed to investigate the chemisorption and diffusion of H atoms on the surface of single-walled carbon nanotubes (SWNTs). The results show that the binding energy of a single hydrogen atom on the SWNTs surface decreases as the diameter of the tube increases and is not affected by the chirality of the tube much. Two hydrogen atoms favor binding at adjacent and opposite positions rather than at alternate carbon site. As for the diffusion of H atoms on the tube, it is found that an isolated H atom can diffuse rather than desorb on the small SWNT upon heating. As the tube diameter increases, the diffusion barrier for H atom on the surface decreases. Further study shows that when the H atom diffuses around another H atom, the diffusion barriers vary with the relative sites of the two H atoms.  相似文献   

19.
A novel method to synthesize single-wall carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) nanocomposite by in-situ polymerization in supercritical CO2 is presented. The surfaces of the SWNT bundles were first functionalized with amino ethyl methacrylate (AEMA) followed by co-polymerization with methyl methacrylate. Supercritical fluid enhanced the diffusivity of monomer and facilitated the growth of tethered PMMA chains near the entanglement area and the interstitial space of the SWNT bundles. Partial debundling and disentanglement of the SWNT bundles and an enhanced dispersion in the polymer matrix were observed under SEM and TEM. After the removal of the polymer matrix physically attached to the nanotubes, it is found that the nanotubes were covered by tethered PMMA chains, which were a few nanometers in thickness. This work creates a route for improving impregnation and dispersion in SWNT composites; the same process can be extended to other vinyl polymers.  相似文献   

20.
We introduce a new technique for measurement of the thermal conductivity of ultrathin films of single-walled carbon nanotubes (SWNTs) utilizing IR radiation as heat source and the SWNT film as thermometer. The technique is applied to study the temperature dependence of the thermal conductivity of an as-prepared SWNT film obtained in the electric arc discharge process and a film of purified SWNTs prepared by vacuum filtration. The interplay between thermal and electrical transport in SWNT networks is analyzed in relation to the type of intertube junctions and the possibility of optimizing the thermal and electrical properties of SWNT networks for specific applications is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号