首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
激光重熔在电子封装领域中SnPb共晶钎料凸点制作方面存在极大的优势。采用扫描电子显微镜(SEM)分析了激光加热条件下SnPb共晶钎料与Au/Ni/Cu焊盘之间的界面反应,探讨了钎料中的溶解与扩散动力学。结果表明:CnPb共晶钎料在激光加热瞬间与Au/Ni/Cu焊盘中的Au发生反应,生成Au-Sn金属间化合物,其形貌和分布与激光输入能量密切相关;随着激光输入能量的增加,Au-Su化合物由边境连续层状转变为针状,最后以细小颗粒弥散分布在钎料内部。  相似文献   

2.
Au-20 wt% Sn eutectic solder is used as bumps in flip chip package of power LED (Light Emitting Diode) due to its excellent properties. The Au/Sn dual-layer films were fabricated on Si wafer by pulse electroplating of Au and Sn sequentially, and the solid?Csolid interfacial reaction during aging and the eutectic reaction during reflow soldering were investigated in the present work. After storage at room temperature for 1 week, three phases of AuSn, AuSn2 and AuSn4 were sequentially formed at the Au/Sn (10 ??m/10 ??m) interface, and the thickness of this reaction region was about 5 ??m. Firstly, AuSn4 was formed at the Au/Sn interface, and then AuSn and AuSn2 were formed at the Au/AuSn4 interface. After aging at 150 °C for 5 and 10 h, a similar layered structure of AuSn/AuSn2/AuSn4 was also observed. Due to the faster diffusion of Au to Sn layer, all the Sn elements were consumed after aging at 150 °C for 15 h and AuSn4 layer gradually transformed into AuSn and AuSn2 layers. For the specimen of Au/Sn (9 ??m/6 ??m) films on Si chip, a bamboo-shoot-like microstructure of Au5Sn/AuSn/AuSn2 was formed in the reaction region after reflowed at 280 °C for 10 s; while a typical two-phase (Au5Sn and AuSn) eutectic microstructure was formed after reflowed at 280 °C for 60 s.  相似文献   

3.
采用水热蒸发法制备了KCl∶Ce3+荧光粉。测量并分析了材料在室温下的真空紫外激发光谱及相应的发射光谱。结果表明激发谱显示6个峰,峰位分别为149、194、206、219、233和251nm。其中149nm的激发峰是基质吸收引起的;194、206、219、233和251nm是Ce3+离子的4f→5d跃迁引起的。发射峰显示双峰结构,峰位分别是311和326nm。此峰对应于Ce3+离子的5d→4f(2F5/2,2F7/2)跃迁。  相似文献   

4.
《Materials Letters》2006,60(13-14):1669-1672
The effect of Cu diffusion through Ni on the interfacial reactions of Sn3.5Ag0.75Cu (SAC) and SnPb solders with Au/Ni/Cu substrate during aging was investigated in this study. AuSn4 needle-like intermetallic compound (IMC) formed at the interfaces of both SAC and SnPb solder joints after laser reflow. In SnPb solder joints, a layer-type ternary IMC, (Au,Ni)Sn4, formed over a thin layer quaternary IMC (Au,Ni,Cu)3Sn4 after aging at 150 °C for 4 days, in which Cu came from the Cu pad below the Ni layer through diffusion. This (Au,Ni,Cu)3Sn4 IMC evolved into a new kind of quaternary IMC (Au,Ni,Cu)6Sn5 with further aging at 150 °C for 8 days because more Cu diffused through Ni and was involved into the IMC formation. For SAC solder joints, needle-like binary AuSn4 IMC in as-soldered state changed into a layer-type quaternary IMC (Au,Ni,Cu)Sn4. The quaternary IMC (Au,Ni,Cu)6Sn5, which has the same composition as those found in SnPb solder joints, was developed below the (Au,Ni,Cu)Sn4 layer after aging at 150 °C for 8 days. It was found that Cu diffusion played a key role in the interfacial reaction and compound formation.  相似文献   

5.
AuSn20 (mass fraction) lead-free solder reacting with the Au/Ni-metalized AlSi50 substrate during reflowing and aging processes were investigated in this study. The single lap shear strength, fracture behavior and microstructure evolution characteristics of the joints are detected. It is found that only a thin (Ni,Au)3Sn2 layer forms at the interface between the AuSn20 solder and Ni metalized AlSi50 alloy. But a composite Intermetallic compound (IMC) layer of (Ni,Au)3Sn2 and (Au,Ni)Sn is formed in the aged joints, due to the continuous interfacial reactions during aging process. The growth of the composite IMC layer is governed by the volume diffusion of the constituent elements at 120, 160 and 200 °C. The shear strength decreases with the increasing aging time and temperature, which is caused primarily by the growth of the IMC layer. The presence of faceted structures on the fracture surfaces of these specimens is indicative of a brittle failure mode for the joints.  相似文献   

6.
In this paper, the interfacial reactions between Sn-3.5Ag solder and Sn-3.5Ag-1.5In solder and Au/Ni/Cu pads in ball-grid-array (BGA) packages during solid aging were investigated by microstructural observations and phase analysis. During the solid aging, the intermetallic compound (IMC) layer in Sn-3.5Ag/Au/Ni/Cu solder joints evolved from the (Ni, Au)Sn4 phase to the Ni3Sn4 phase, but the rate of growth of the IMC layer did not change significantly. While, in Sn-3.5Ag-1.5In/Au/Ni/Cu solder joints, the phases evolved from the (Ni, Au)Sn4 and Ni3Sn4 phases into Ni3(Sn, In)4 phase. The distribution of In atoms in the solder alloy weakened interatomic force in the Sn-3.5Ag-1.5In solder alloy and the involvement of In atoms in the interfacial reaction generated more energy of distortion of the Ni3(Sn, In)4 and (Ni, Au)(Sn, In)4 lattices. These both accelerated the diffusion of Sn atoms and the rate of growth of the whole IMC layer, but this effect reduced gradually after prolonged aging.  相似文献   

7.
The wetting property of (Sn-9Zn)-2Cu (wt pct) on Ni substrate and the evolution of interfacial microstructure in (Sn-9Zn)-2Cu/Ni joints during soldering as well as isothermal aging were studied.The wetting ability of eutectic Sn-9Zn solder on Ni substrate was markedly improved by adding 2 wt pct Cu into this solder alloy.Plate-like Cu5Zn8 intermetallic compounds (IMCs) were detected in (Sn-9Zn)-2Cu solder matrix.A continuous Ni5Zn21 IMC layer was formed at (Sn-9Zn)-2Cu/Ni interface after soldering.This IMC layer kept its type and integrality even after aging at 170℃ for up to 1000 h.At the early aging stage (before 500 h), the IMC layer grew fast and its thickness followed a linear relationship with the square root of aging time.Thereafter,however, the thickness increased very slowly with longer aging time.When the joints were aged for 1000 h,a new IMC phase, (Cu,Ni)5Zn8, was found in the matrix near the interface.The formation of (Cu,Ni)5Zn8phase can be attributed to the diffusion of Ni atoms into the solder matrix from the substrate.  相似文献   

8.
ead-free Sn3.5Ag and Sn3.5Ag0.5Cu solder balls were reflowed by laser to form solder bumps. Shear test was performed on the solder bumps, and SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectrometer) was used to analyze the formation of intermetallic compounds (IMCs) at interface region. A finite element modeling on the temperature gradient and distribution at the interface of solder bump during laser reflow process was conducted to elucidate the mechanism of the IMCs growth direction. The results show that the parameters window for laser reflow bumping of Sn3.5Ag0.5Cu was wider than that of Sn3.5Ag. The shear strength of Sn3.5Ag0.5Cu solder bump was comparable to that of Sn3.5Ag solder bump, and was not affected obviously by laser power and irradiation time when appropriate parameters were used. Both laser power and heating time had a significant effect on the formation of IMCs. A continuous AuSn4 intermetallic compound layer and some needle-like AuSn4 were observed at the interface of solder and Au/Ni/Cu metallization layer when the laser power is small. The formation of needle-like AuSn4 was due to temperature gradient at the interface, and the direction of temperature gradient was the preferred growth direction of AuSn4. With increasing the laser power and heating time, the needle-like AuSn4 IMCs dissolved into the bulk solder, and precipitated out once again during solidification along the grain boundary of the solder bump.  相似文献   

9.
光电子封装中,光导纤维的定位键合是一项关键技术,并且焊点界面处的显微组织对于焊点的可靠性有重要影响.本文选用80Au20Sn和52In48Sn钎料实现了激光钎焊条件下的光纤键合,采用扫描电子显微镜及能谱分析的方法对于两种钎料分别与硅片上的Au/Ti镀层和光纤上的Au/Ni镀层反应形成的界面微观组织形态及形成规律进行了分析.结果表明:对于80Au20Sn钎料,除了共晶组织ζ相+δ相,在AuSn/Au/Ti镀层界面形成了大量枝状的先共晶ζ相,在AuSn/Au/Ni镀层界面形成了针状的(Au,Ni)3Sn2;对于52In48Sn钎料,在InSn/Au/Ti镀层界面形成了连续层状的Au(In,Sn)2,随着输入能量的增加,其逐渐转变为不连续的块状化合物AuIn2,在熔融钎料流的作用下部分AuIn2脱离界面进入钎料中,在InSn/Au/Ni镀层界面形成了一层极薄的Au(In,Sn)2.  相似文献   

10.
The early interfacial reaction and premelting characteristics of the Sn/Cu and Sn/Ag soldering systems, and the formation and morphology transition of interfacial intermetallic compounds in the two systems during the reflow soldering process were investigated by using a differential scanning calorimeter. Results show that the initial interfacial eutectic reaction arising from atomic interdiffusion in solid-state Sn/Cu and Sn/Ag systems results in the premelting at each interface of the two systems at a temperature 4.9 and 10.6?°C respectively lower than the actual melting point of pure tin, and consequently both of the Sn/Cu and Sn/Ag soldering systems exhibit morphology change of the intermetallic compound (IMC) as the solder experiences a transition from solid-state to liquid-state in a very small temperature range. The change in the interfacial energy between the solid (or liquid) Sn-rich phase and IMC phase is the essential factor leading to the morphology transition of the interfacial IMC in the Sn/Cu and Sn/Ag soldering systems.  相似文献   

11.
This paper evaluates the shearing behavior of ball grid array (BGA) solder joints on Au/Ni/Cu pads of FR4 substrates after multiple reflow soldering. A new Pb-free solder, Sn–3Ag–0.5Cu–8In (SACI), has been compared with Sn–3Ag–0.5Cu (SAC) and Sn–37Pb (SP) solders, in terms of fracture surfaces, shearing forces and microstructures. Three failure modes, ball cut, a combination of solder shear and solder/pad bond separation, and pad lift, are assessed for the different solders and reflow cycles. It is found that the shearing forces of the SP and SAC solder joints tend to increase slightly with an increase in the number of reflow cycles due to diffusion-induced solid solution strengthening of the bulk solder and augmentation of the shearing area. However, the shearing forces of the SACI solder joints decrease slightly after four cycles of reflow, which is ascribed to the thermal degradation of both the solder/intermetallic compound (IMC) and IMC/Ni interfaces. The SACI solder joints yield the highest strengths, whereas the SP solder joints give the smallest values, irrespective of the number of reflow cycles. Thickening of the interfacial IMC layer and coarsening of the dispersing IMC particles within the bulk solders were also observed. Nevertheless, the variation of shearing forces and IMC thickness with different numbers of reflow cycles was not so significant since the Ni under layer acted as an effective diffusion barrier. In addition, the initially-formed IMC layer retarded the further extensive dissolution of the pad material and its interaction with the solder.  相似文献   

12.
An Au-rich, eutectic Au/Sn alloy was fabricated by sequential electroplating of Au and Sn, and reflowing the as-deposited Au/Sn/Au triple-layer film at 320–350 °C. Microstructures and phase compositions for the as-deposited Au/Sn/Au triple-layer film and the reflowed Au-rich, eutectic Au/Sn alloys were studied. Two Si wafers, each with the Au-rich, eutectic Au/Sn alloy solder, were bonded together. For the deposited Au/Sn/Au triple-layer film, reaction between Au and Sn occurs at room temperature leading to the formation of AuSn and AuSn4. After reflowing at 320 °C, two phases remain, AuSn and Au5Sn, with the AuSn particles distributed randomly in the Au5Sn matrix. There are also some micropores and microcracks in the reflowed alloy. If the annealing temperature is increased to 350 °C, the Au/Sn alloy is denser and contains fewer micropores. However, microcracks remain, forming preferentially along the Au5Sn/AuSn interface. After reflowing at 320 °C under a pressure of 13 kPa, two Si wafers are joined using the Au-rich, eutectic Au/Sn alloy solder. The solder is in intimate contact with the Si wafers; however, there are some micropores within the solder. After reflowing at 350 °C, the bond is quite good, without microcracks or micropores at the Si wafer/solder interface or within the solder.  相似文献   

13.
This paper reports on the interfacial reaction and growth behavior of intermetallic compounds (IMCs) layer (η-Cu6Sn5 + ε-Cu3Sn) between molten Sn–58Bi solder and Cu substrate for various liquid–solid soldering temperatures and times. In addition, the Bi segregation at the Cu3Sn/Cu interface was also discussed, too. It was found that the Cu6Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate, while the Cu3Sn IMC was formed at the interface between Cu6Sn5 and Cu substrate as the higher soldering temperature and/or longer soldering time were applied. Both thickness of total IMCs layer and Cu6Sn5 grains size increased with increased soldering temperature or time. The growth of the Cu-Sn IMCs layer during soldering exhibited a linear function of the soldering temperature and 0.27 power of soldering time. With soldering temperature increasing (above 280 °C in this present study), Bi was accumulated at the Cu3Sn/Cu interface and resulted in some isolated Bi particles were formed.  相似文献   

14.
Gold-tin (Au–Sn) solder and Kovar alloy have been widely used in many fields such as mechanical engineering, atomic energy industry, aerospace facility, and electronic devices. Solder bonds strongly to the metallized substrate by forming intermetallic compounds (IMCs) at the interface. The IMC layer may adversely affect the reliability of the joints due to excessive growth and thermal fatigue during storage and service. Therefore, knowledge of the interfacial reactions between the Au–Sn solder and Au/Ni-metallized Kovar in microelectronic and optoelectronic packaging is essential. In this study, the microstructural evolution and interfacial reactions between the Au–Sn solder and Au/Ni-plated Kovar substrate were studied during aging at 180 and 250 °C for up to 1,000 h. The microstructure of the Au–Sn/Ni/Kovar joint was stable during aging at 180 °C. The solid-state interfacial reaction was much faster at 250 °C than at 180 °C. The joints aged at 250 °C fractured along the interface, thereby demonstrating brittle failure possibly because of the brittle IMC layer at the interface. The complete consumption of the thin Ni layer significantly weakened the joint interface during aging at 250 °C and clearly demonstrated the need for a thicker Ni layer in order to ensure the high temperature reliability of the Au–Sn/Ni/Kovar joint above 250 °C.  相似文献   

15.
The effects of adding Cu-particles into Sn–9Zn solder on the growth behaviors of the interfacial intermetallic compounds (mainly γ-Cu5Zn8) between the solder and Cu-substrate were investigated in soldering and aging duration. It is approved that the Cu-particles dispersion in the solder can effectively suppress the growth rate of the intermetallic compounds at the solder/Cu-substrate interface compared with that without adding Cu-particles. The results also reveal that the Cu-particles in the solder are in situ transformed into the intermetallic compounds due to its reaction with single Zn. It is very interesting that the growth rate of the intermetallic compounds at solder/Cu-particles interface is larger than that at solder/Cu-substrate interface. With increasing the amount of Cu-particles the thickness of the intermetallic compounds at solder/Cu-substrate decreases continuously. The intermetallic compounds growth in aging obeys the parabolic rule whether adding Cu-particles or not.  相似文献   

16.
The interfacial reactions of Sn–2.0Ag–2.5Zn solder on Cu and Ni–W substrates after soldering and subsequent aging have been investigated in this study. Ni–W alloy layers with tungsten content of 3.0 and 10.0 at.% were electrodeposited on copper substrate. The interfacial micrographs of solder joints prepared at 250 °C for 15 s and aged at 150 °C for 24, 96 and 216 h are shown. Double-layer IMC composed of Cu5Zn8 and Ag3Sn was observed at the interface of Sn–2Ag–2.5Zn and Cu couple, which was compact and acted as a barrier layer to confine the further growth of Cu–Sn IMC. On Ni–W barrier layer, a thin Ni3Sn4 film appeared between the solder and Ni–W layer, whose thickness decreases with the increase of W content. During the aging process, a thin layer of the Ni–W substrate transforms into an amorphous bright layer, and the thickness of amorphous layer increased as aging time extended. Referring to the elemental line-distribution and the thickness of different layers at the interface, the formation of the bright layer is caused by the fast diffusion of Sn into Ni–W layer.  相似文献   

17.
A study of Sn-Bi-Ag-(In) lead-free solders   总被引:6,自引:0,他引:6  
Sn-Bi-Ag-(In) solder alloys have been extensively studied in the study. The experimental results reveals that the liquidus temperatures of Sn-(1–5) Bi-(2–3.5)Ag-(0–10)In solders are between 201.7 and 225.3°C, which were higher than that of the most popular eutectic Pb-Sn solder (183°C). Additions of (5–10) wt% In into Sn-Bi-Ag solders can effectively decrease the melting point of the solder alloy. However, the gap between T s and T L temperatures increases with the additions of Bi and In into Sn-Bi-Ag-(In) solders. Although there is no flux applied during soldering, most Sn-Bi-Ag-(In) solder alloys can well bond the Au/Ni metallized copper substrate. 94Sn-3Bi-3Ag solder demonstrates the lowest wetting angle of 45° among all test samples. Thermal expansion coefficients of both 94Sn-3Bi-3Ag and 90Sn-2Bi-3Ag-5In solders are slightly less than that of 63Sn-37Pb. Both 90Sn-2Bi-3Ag-5In/substrate and 94Sn-3Bi-3Ag/substrate interfaces demonstrate similar reaction kinetics in the experiment. The stability of the interface is greatly impaired during 90°C aging. Some locations of the electroless Ni layer break down, and new phases are formed nearby the interface during aging treatment. Initially, the growth of Ni-rich (Ni,Cu)3Sn4 phase dominates the interfacial reaction. However, the growth of Cu-rich (Cu,Ni)6Sn5 phase will dominate the reaction layer for specimens aged at 90°C for long time periods.  相似文献   

18.
Low temperature joining of amorphous alloys has big challenges to prevent them from crystallization. An ultrasonic-assisted soldering method was proposed to join the Fe-based amorphous alloys with the aluminum plates in air by using Sn-based solders. No obvious defects were observed and the joining ratio was more than 90%. At the interface of solder/aluminum, scallop α-Al solid solutions were formed and large fretting (pits) with a size of 50 μm on the aluminum plates was found due to ultrasonic vibrations. At the interface of solder/amorphous, Fe–Zn intermetallic compound (FeZn13) was probably formed. Its formation activation energy was approximately 30.9 kJ/mol between the amorphous iron and the Sn–9Zn during the solid state diffusion, which was much lower compared with crystallized couples. The enhanced diffusion/reaction and the much low activation energy in this work are probably attributed to the amorphous state of the Fe-based foils. Adding nickel in the Sn–Zn solder can improve the hardness of the joints by formation of NiAl3 intermetallic particles and depress the corrosion on the aluminum. Both the initially interfacial wetting and the microstructure refinement during solidification of the filler solder were improved by ultrasonic vibrations.  相似文献   

19.
The increasing industry awareness of lead-free activities has prompted original equipment manufacturers and suppliers to investigate lead-free solder systems in detail. The reliability of lead-free solders has been studied a lot recently, but the knowledge of it is still incomplete and many issues related to them are under heavy debate. In this study, the interfacial reactions of Sn-3.5Ag and Sn-3.5Ag-0.5Cu (wt.%) solders with Cu/Ni(P)/Au ball grid array (BGA) pad metallization were systematically investigated after multiple reflows. The peak reflow temperature was fixed at 260°C. It was found that relatively high consumption of Ni(P) was observed in the case of Sn-3.5%Ag solder alloys during multiple reflow cycles. A white layer of P rich Ni-Sn compound was observed above the dark Ni3P layer for Sn-3.5%Ag solder after several reflows. It was noticed that the mean thickness of the intermetallics and the dark P-rich Ni layer at the interface was decreased just by adding 0.5% Cu in Sn-3.5%Ag solder alloy with less overall interfacial reaction at the solder joint.  相似文献   

20.
In this paper, the formation and evolution characteristics of the intermetallic compounds (IMCs) in SAC305/Ag/Cu and SAC0705-3.5Bi-0.05Ni/Ag/Cu solder during reflow and 150 °C isothermal aging are investigated. Experimental results indicate that Ag3Sn forms as soon as the SAC305/Ag/Cu solder spheres wetted to the substrates. With increased soldering time, the Ag layer on a Cu substrate dissolved into the molten SAC305 solder and the interfacial IMC consisted of Cu6Sn5. The Ag layers show a faster dissolution rate in SAC0705-3.5Bi-0.05Ni/Ag/Cu than in SAC305/Ag/Cu, which is attributed to a larger concentration gradient of Ag for SAC0705-3.5Bi-0.05Ni/Ag/Cu. The formation and coarsening of a Cu3Sn layer between Cu6Sn5 and the Cu substrate caused the formation of Kirkendall voids and delamination during aging in the SAC305/Ag/Cu. A small addition of Ni in the solder significantly suppressed the formation of a Cu3Sn layer in the SAC0705-3.5Bi-0.05Ni/Ag/Cu, resulting in fewer voids in the soldering interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号